Skip to content

zokooo/DS-PWC-pytorch

 
 

Repository files navigation

Official version(Caffe & PyTorch) is at https://github.com/NVlabs/PWC-Net, thank you all for attention.

News

  • PWC- NET code function version update and improvement
  • Added deep separable convolution and data enhancement including mixups, color changes, and data erasure

    NVIDIA is so kind to use their wonderful CUDA to let my mistake seem to be less stupid, btw I don't intend to remove my freaking slow Cost Volume Layer for code diversity or something.

Acknowledgments

PWC-Net

This is an unofficial pytorch implementation of CVPR2018 paper: Deqing Sun et al. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume".
Resources arXiv | Caffe(official)

(flow outputs from top to bottom, the rightest is groundtruth)

It starts to output reasonable flows. However, both time and performance need to be improved. Hope you have fun with this code, and feel free to share your idea about network and its hyper parameters.

Usage

  • Requirements

    • Python 3.6+
    • PyTorch 1.6.0
    • Tensorflow
  • Get Started with Demo
    Note that we only save weights of parameters instead of entire network, provided model file is for default configs, we may upload more advanced models in the future.

    python3 main.py --input_norm --batch_norm --residual --corr Correlation --corr_activation pred --load example/SintelFinal-200K-noBN_SintelFinal-148K-BN.pkl -i example/1.png example/2.png -o example/output.flo
    
  • Prepare Datasets

    • Download FlyingChairs for training
      filetree when setting --dataset FlyingChairs --dataset_dir <DIR_NAME>
      <DIR_NAME>
      ├── 00001_flow.flo
      ├── 00001_img1.ppm
      ├── 00001_img2.ppm
      ...
      
    • Download FlyingThings for fine-tuning
      filetree when setting --dataset FlyingThings --dataset_dir <DIR_NAME>
      <DIR_NAME>
      
    • Download MPI-Sintel for fine-tuning if you want to validate on MPI-Sintel
      filetree when setting --dataset Sintel --dataset_dir <DIR_NAME>
      <DIR_NAME>
      ├── training
      |   ├── final
      |   ├── clean
      |   ├── flow
      |   ...
      ├── test
      ...
      
    • Download KITTI for fine-tuning if you want to validate on KITTI
      filetree when setting --dataset KITTI --dataset_dir <DIR_NAME>
      <DIR_NAME>
      ├── training
      |   ├── image_2
      |   ├── image_3
      |   ...
      └── testing
      
  • Install Correlation Package If you want to use correlation layer (--corr Correlation), please follow NVIDIA/flownet2-pytorch to install extra packages.

  • Train

    python3 main.py train --dataset <DATASET_NAME> --dataset_dir <DIR_NAME>
    

Parameters

Parameter Name Parameter Types Meaning Default
device string is gpu cuda
num_workers int num of workers 8
input-norm store_true input normal false
rgb_max float max RGB 255
batch-norm store_true Net Layer normal false
lv_chs int -- 3, 16, 32, 64, 96, 128, 192
output_level int output level 4
corr string cost volume method cost_volume
search_range int corr range parm d 4
corr_activation store_true corr layer activate layer false
residual store_true is residual false
input_shape int input shape (3, 2, 384, 448)
Parametric Statistics --------- ---------- ----------
summary Parametric statistics
i / input_shape int input shape (3,2,384,448)
Training --------- --------- ----------
corp_type string corp type random
load string load model None
dataset string dataset type None
dataset_dir string dataset address None
lr Scientific enumeration leaning rate 1e-4
optimizer string optimizer Adam
total_step int Total number of iterations 200 * 1000
Transforms ---------- ----------- -------------
mixup store_true transforms-mixup false
mixup_alpha float mixup-Coefficient of proportional fluctuation 0.2
mixup_prb float mixup-The probability of transforms 0.5
no_transforms store_false Color Change - Erase True
erasing float Erase probability 0.7
Prediction --------- --------- ----------
i / input string input address None
o / output string output address None

Details

If there is any difference between your implementation and mine, please create an issue or something.

  • Network Parameters
    Parameters: 1.96M Size: 7.79 MB
    
  • Training Logs
    Step [100/800000], Loss: 0.3301, EPE: 42.0071, Forward: 34.287192821502686 ms, Backward: 181.38124704360962 ms
    Step [200/800000], Loss: 0.2359, EPE: 28.7398, Forward: 32.04517364501953 ms, Backward: 182.32821941375732 ms
    Step [300/800000], Loss: 0.2009, EPE: 24.3589, Forward: 31.214130719502766 ms, Backward: 182.9234480857849 ms
    Step [400/800000], Loss: 0.1802, EPE: 21.8847, Forward: 31.183505654335022 ms, Backward: 183.74325275421143 ms
    Step [500/800000], Loss: 0.1674, EPE: 20.4151, Forward: 30.955915451049805 ms, Backward: 183.9722876548767 ms
    Step [600/800000], Loss: 0.1583, EPE: 19.3853, Forward: 30.943967501322426 ms, Backward: 184.35366868972778 ms
    Step [700/800000], Loss: 0.1519, EPE: 18.6664, Forward: 30.953510829380583 ms, Backward: 184.56024714878626 ms
    Step [800/800000], Loss: 0.1462, EPE: 18.0256, Forward: 30.91249644756317 ms, Backward: 184.76592779159546 ms
    

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 68.4%
  • Cuda 24.1%
  • C++ 7.5%