forked from Kerorohu/DS-PWC-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
summary.py
82 lines (72 loc) · 3.17 KB
/
summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch as th
import torch.nn as nn
from torch.autograd import Variable
from collections import OrderedDict
def summary(model, input_size):
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split('.')[-1].split("'")[0]
module_idx = len(summary)
m_key = '%s-%i' % (class_name, module_idx + 1)
summary[m_key] = OrderedDict()
summary[m_key]['input_shape'] = list(input[0].size())
summary[m_key]['input_shape'][0] = -1
summary[m_key]['output_shape'] = list(output.size()) if isinstance(output, Variable) else list(
output[0].size())
summary[m_key]['output_shape'][0] = -1
params = 0
if hasattr(module, 'weight'):
params += th.prod(th.LongTensor(list(module.weight.size())))
if module.weight.requires_grad:
summary[m_key]['trainable'] = True
else:
summary[m_key]['trainable'] = False
# if hasattr(module, 'bias'):
# params += th.prod(th.LongTensor(list(module.bias.size())))
summary[m_key]['nb_params'] = params
if not isinstance(module, nn.Sequential) and \
not isinstance(module, nn.ModuleList) and \
not (module == model):
hooks.append(module.register_forward_hook(hook))
if th.cuda.is_available():
dtype = th.cuda.FloatTensor
else:
dtype = th.FloatTensor
# check if there are multiple inputs to the network
if isinstance(input_size[0], (list, tuple)):
x = [Variable(th.rand(1, *in_size)).type(dtype) for in_size in input_size]
else:
x = Variable(th.rand(1, *input_size)).type(dtype)
# print(x.shape)
# print(type(x[0]))
# create properties
summary = OrderedDict()
hooks = []
# register hook
model.apply(register_hook)
# make a forward pass
model(x)
# remove these hooks
for h in hooks:
h.remove()
print('----------------------------------------------------------------')
line_new = '{:>20} {:>25} {:>15}'.format('Layer (type)', 'Output Shape', 'Param #')
print(line_new)
print('================================================================')
total_params = 0
trainable_params = 0
for layer in summary:
## input_shape, output_shape, trainable, nb_params
line_new = '{:>20} {:>25} {:>15}'.format(layer, str(summary[layer]['output_shape']),
summary[layer]['nb_params'])
total_params += summary[layer]['nb_params']
if 'trainable' in summary[layer]:
if summary[layer]['trainable'] == True:
trainable_params += summary[layer]['nb_params']
print(line_new)
print('================================================================')
print('Total params: ' + str(total_params))
print('Trainable params: ' + str(trainable_params))
print('Non-trainable params: ' + str(total_params - trainable_params))
print('----------------------------------------------------------------')
# return summary