You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
With this model: the amount of backlog would be reduced significantly, the amount of staff needed to do the job would be reduced drastically, the processing time would be shortened significantly and more cases of fraudulent transactions would be tracked down in a given amount of data processed - more than 40% increase in efficiency!
With a precision of 86% and model's CAP curve showing an accuracy of 100%! This means it is capable of correctly predicting 100% of patients with a heart disease after processing 50% of the data. The model's performance is "Too Good to be True"! However, with Train accuracy = 86% and Test accuracy = 82%, there is no visible sign of overfitting.
Up to 90% accuracy with just 5 features using KNN algorithm and PCA for feature engineering. The dataset contained less than 1000 observations. The model's accuracy could be improved using more observations, further hyperparameter optimization and feature engineering