Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve random effect dispersion #305

Merged
merged 3 commits into from
Dec 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Type: Package
Package: tidybulk
Title: Brings transcriptomics to the tidyverse
Version: 1.15.2
Version: 1.15.3
Authors@R: c(person("Stefano", "Mangiola", email = "mangiolastefano@gmail.com",
role = c("aut", "cre")),
person("Maria", "Doyle", email = "Maria.Doyle@petermac.org",
Expand Down
9 changes: 8 additions & 1 deletion R/functions.R
Original file line number Diff line number Diff line change
Expand Up @@ -758,10 +758,17 @@ get_differential_transcript_abundance_glmmSeq <- function(.data,
# Reorder counts
counts = counts[,rownames(metadata),drop=FALSE]

# Create design matrix for dispersion, removing random effects
design =
model.matrix(
object = .formula |> eliminate_random_effects(),
data = metadata
)

if(quo_is_symbolic(.dispersion))
dispersion = .data |> pivot_transcript(!!.transcript) |> select(!!.transcript, !!.dispersion) |> deframe()
else
dispersion = setNames(edgeR::estimateDisp(counts)$tagwise.dispersion, rownames(counts))
dispersion = counts |> edgeR::estimateDisp(design = design) %$% tagwise.dispersion |> setNames(rownames(counts))

# # Check dispersion
# if(!names(dispersion) |> sort() |> identical(
Expand Down
19 changes: 13 additions & 6 deletions R/functions_SE.R
Original file line number Diff line number Diff line change
Expand Up @@ -1133,10 +1133,17 @@ get_differential_transcript_abundance_glmmSeq_SE <- function(.data,
.data %>%
assay(my_assay)

# Create design matrix for dispersion, removing random effects
design =
model.matrix(
object = .formula |> eliminate_random_effects(),
data = metadata
)

if(quo_is_symbolic(.dispersion))
dispersion = rowData(.data)[,quo_name(.dispersion),drop=FALSE] |> as_tibble(rownames = feature__$name) |> deframe()
else
dispersion = setNames(edgeR::estimateDisp(counts)$tagwise.dispersion, rownames(counts))
dispersion = counts |> edgeR::estimateDisp(design = design) %$% tagwise.dispersion |> setNames(rownames(counts))

# # Check dispersion
# if(!names(dispersion) |> sort() |> identical(
Expand Down Expand Up @@ -1171,11 +1178,11 @@ get_differential_transcript_abundance_glmmSeq_SE <- function(.data,
# # Add raw object
# attach_to_internals(glmmSeq_object, "glmmSeq") %>%

# Communicate the attribute added
{
rlang::inform("tidybulk says: to access the raw results (fitted GLM) do `attr(..., \"internals\")$glmmSeq`", .frequency_id = "Access DE results glmmSeq", .frequency = "once")
(.)
} %>%
# # Communicate the attribute added
# {
# rlang::inform("tidybulk says: to access the raw results (fitted GLM) do `attr(..., \"internals\")$glmmSeq`", .frequency_id = "Access DE results glmmSeq", .frequency = "once")
# (.)
# } %>%

# Attach prefix
setNames(c(
Expand Down
29 changes: 29 additions & 0 deletions R/methods.R
Original file line number Diff line number Diff line change
Expand Up @@ -2600,6 +2600,7 @@ setMethod("ensembl_to_symbol", "tidybulk", .ensembl_to_symbol)
#' All methods use raw counts, irrespective of if scale_abundance or adjust_abundance have been calculated, therefore it is essential to add covariates such as batch effects (if applicable) in the formula.
#'
#' Underlying method for edgeR framework:
#'
#' .data |>
#'
#' # Filter
Expand All @@ -2623,7 +2624,10 @@ setMethod("ensembl_to_symbol", "tidybulk", .ensembl_to_symbol)
#' edgeR::glmQLFit(design) |> // or glmFit according to choice
#' edgeR::glmQLFTest(coef = 2, contrast = my_contrasts) // or glmLRT according to choice
#'
#'
#'
#' Underlying method for DESeq2 framework:
#'
#' keep_abundant(
#' factor_of_interest = !!as.symbol(parse_formula(.formula)[[1]]),
#' minimum_counts = minimum_counts,
Expand All @@ -2636,6 +2640,31 @@ setMethod("ensembl_to_symbol", "tidybulk", .ensembl_to_symbol)
#' DESeq2::results()
#'
#'
#'
#' Underlying method for glmmSeq framework:
#'
#' counts =
#' .data %>%
#' assay(my_assay)
#'
#' # Create design matrix for dispersion, removing random effects
#' design =
#' model.matrix(
#' object = .formula |> eliminate_random_effects(),
#' data = metadata
#' )
#'
#' dispersion = counts |> edgeR::estimateDisp(design = design) %$% tagwise.dispersion |> setNames(rownames(counts))
#'
#' glmmSeq( .formula,
#' countdata = counts ,
#' metadata = metadata |> as.data.frame(),
#' dispersion = dispersion,
#' progress = TRUE,
#' method = method |> str_remove("(?i)^glmmSeq_" ),
#' )
#'
#'
#' @return A consistent object (to the input) with additional columns for the statistics from the test (e.g., log fold change, p-value and false discovery rate).
#'
#'
Expand Down
30 changes: 29 additions & 1 deletion R/utilities.R
Original file line number Diff line number Diff line change
Expand Up @@ -1524,4 +1524,32 @@ feature__ = get_special_column_name_symbol(".feature")
sample__ = get_special_column_name_symbol(".sample")



#' Produced using ChatGPT - Eliminate Random Effects from a Formula
#'
#' This function takes a mixed-effects model formula and returns a modified
#' formula with all random effects removed, leaving only the fixed effects.
#'
#' @param formula An object of class \code{formula}, representing a mixed-effects model formula.
#' @return A formula object with random effects parts removed.
#' @examples
#' eliminate_random_effects(~ age_days * sex + (1 | file_id) + ethnicity_simplified + assay_simplified + .aggregated_cells + (1 + age_days * sex | tissue))
#' @noRd
#' @importFrom stats as.formula
eliminate_random_effects <- function(formula) {
# Convert the formula to a string
formula_str <- deparse(formula)

# Split the string by '+' while keeping the brackets content together
split_str <- unlist(strsplit(formula_str, "(?<=\\))\\s*\\+\\s*|\\+\\s*(?=\\()", perl = TRUE))

# Filter out the random effects parts
fixed_effects <- grep("\\|", split_str, value = TRUE, invert = TRUE)

# Combine the fixed effects parts back into a single string
modified_str <- paste(fixed_effects, collapse = " + ")

# Convert the modified string back to a formula
modified_formula <- as.formula(modified_str)

return(modified_formula)
}
29 changes: 29 additions & 0 deletions man/test_differential_abundance-methods.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion tests/testthat/test-bulk_methods.R
Original file line number Diff line number Diff line change
Expand Up @@ -855,7 +855,7 @@ test_that("differential trancript abundance - random effects",{
pull(P_condition_adjusted) |>
head(4) |>
expect_equal(
c(0.02381167, 0.01097209, 0.01056741, 0.02381167),
c(0.03643414, 0.02938584, 0.02938584, 0.03643414),
tolerance=1e-3
)

Expand Down
2 changes: 1 addition & 1 deletion tests/testthat/test-bulk_methods_SummarizedExperiment.R
Original file line number Diff line number Diff line change
Expand Up @@ -493,7 +493,7 @@ test_that("differential trancript abundance - random effects SE",{
rowData(res)[,"P_condition_adjusted"] |>
head(4) |>
expect_equal(
c(0.1065866, 0.1109067, 0.1116562 , NA),
c(0.03394914, 0.03394914, 0.03394914, NA),
tolerance=1e-2
)

Expand Down
Loading