Skip to content

Latest commit

 

History

History
52 lines (44 loc) · 6.13 KB

Chap7_References.md

File metadata and controls

52 lines (44 loc) · 6.13 KB

References

Navigation

  1. About
  2. Model
  3. Tutorial
  4. Cases
  5. Nomenclature
  6. Classes
  7. References

List of AeroSolved publications

These studies are published by the authors and contributors of AeroSolved, and are related to research performed using the AeroSolved code:

  • Asgari, M., Lucci, F., & Kuczaj, A. K. (2019). Multispecies aerosol evolution and deposition in a bent pipe. Journal of Aerosol Science, 129, 53-70.
  • Frederix, E. M. A., Stanic, M., Kuczaj, A. K., Nordlund, M., & Geurts, B. J. (2015). Extension of the compressible PISO algorithm to single-species aerosol formation and transport. International Journal of Multiphase Flow, 74, 184-194.
  • Frederix, E. M., Stanic, M., Kuczaj, A. K., Nordlund, M., & Geurts, B. J. (2016). Characteristics-based sectional modeling of aerosol nucleation and condensation. Journal of Computational Physics, 326, 499-515.
  • Frederix, E. M. A., Kuczaj, A. K., Nordlund, M., Veldman, A. E. P., & Geurts, B. J. (2017). Application of the characteristics-based sectional method to spatially varying aerosol formation and transport. Journal of Aerosol Science, 104, 123-140.
  • Frederix, E. M. A., Kuczaj, A. K., Nordlund, M., Veldman, A. E. P., & Geurts, B. J. (2017). Eulerian modeling of inertial and diffusional aerosol deposition in bent pipes. Computers & Fluids, 159, 217-231.
  • Frederix, E. M. A. (2016). Eulerian modeling of aerosol dynamics. University of Twente.
  • Frederix, E. M. A., Kuczaj, A. K., Nordlund, M., Bělka, M., Lizal, F., Jedelský, J., ... & Geurts, B. J. (2018). Simulation of size-dependent aerosol deposition in a realistic model of the upper human airways. Journal of Aerosol Science, 115, 29-45.
  • Kuczaj, A. K., Nordlund, M., Jayaraju, S., Komen, E., Krebs, T., Peitsch, M. C., & Hoeng, J. (2016). Aerosol flow in the vitrocell 24/48 exposure system: flow mixing and aerosol coalescence. Applied In Vitro Toxicology, 2(3), 165-174.
  • Lucci, F., Castro,N. D., Rostami,A. A., Oldham, M. J., Hoeng, J., Pithawalla, Y. B., & Kuczaj, A. K. (2018). Characterization and modeling of aerosol deposition in Vitrocell® exposure systems - exposure well chamber deposition efficiency. Journal of Aerosol Science, 123,141-160.
  • Lucci, F., Frederix, E. M. A., & Kuczaj, A. K. (2022). AeroSolved: Computational fluid dynamics modeling of multispecies aerosol flows with sectional and moment methods, Journal of Aerosol Science, 159, 105854
  • Winkelmann, C., Kuczaj, A.K., Nordlund, M. & Geurts, B. J. (2018). Simulation of aerosol formation due to rapid cooling of multispecies vapors. Journal of Engineering Mathematics, 108, 171-196.
  • Winkelmann, C. , Nordlund, M. , Kuczaj, A. K., Stolz, S. & Geurts, B. (2014)., Efficient second‐order time integration for single‐species aerosol formation and evolution. Int. J. for Numerical Methods in Fluids, 74: 313-334.

List of other publications

These studies are key references upon which AeroSolved is based or validated:

  • Belyaev, S. P., & Levin, L. M. (1972). Investigation of aerosol aspiration by photographing particle tracks under flash illumination. Journal of Aerosol Science, 3(2), 127-140.
  • Belyaev, S. P., & Levin, L. M. (1974). Techniques for collection of representative aerosol samples. Journal of Aerosol Science, 5(4), 325-338.
  • Clift, R., Grace, J. R., & Weber, M. E. (2005). Bubbles, drops, and particles. Courier Corporation.
  • Ghia, U. K. N. G., Ghia, K. N., & Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48(3), 387-411.
  • Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons.
  • Issa, R. I., Ahmadi-Befrui, B., Beshay, K. R., & Gosman, A. D. (1991). Solution of the implicitly discretised reacting flow equations by operator-splitting. Journal of Computational Physics, 93(2), 388-410.
  • Kumar, S., & Ramkrishna, D. (1996). On the solution of population balance equations by discretization—I. A fixed pivot technique. Chemical Engineering Science, 51(8), 1311-1332.
  • Lee, K. W., & Chen, H. (1984). Coagulation rate of polydisperse particles. Aerosol Science and Technology, 3(3), 327-334.
  • Manninen, M., Taivassalo, V., & Kallio, S. (1996).On the mixture model for multiphase flow.
  • Maxey, M. R., & Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. The Physics of Fluids, 26(4), 883-889.
  • Nguyen, H. V., Okuyama, K., Mimura, T., Kousaka, Y., Flagan, R. C., & Seinfeld, J. H. (1987). Homogeneous and heterogeneous nucleation in a laminar flow aerosol generator. Journal of Colloid and Interface Science, 119(2), 491-504.
  • Park, S. H., Lee, K. W., Otto, E., & Fissan, H. (1999). The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: Part I—analytical solution using the harmonic mean coagulation kernel. Journal of Aerosol Science, 30(1), 3-16.
  • Ramkrishna, D. (2000). Population balances: Theory and applications to particulate systems in engineering. Elsevier.
  • Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Chemical Engineering Progress, 48(3), 141-146.
  • Sheldon, K. F. (2000). Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. Oxford University Press.
  • Tu, H., & Ray, A. K. (2005). Measurement of activity coefficients from unsteady state evaporation and growth of microdroplets. Chemical Engineering Communications, 192(4), 474-498.
  • Whitby, E. R., & McMurry, P. H. (1997). Modal aerosol dynamics modeling. Aerosol Science and Technology, 27(6), 673-688.
  • Wilck, M., & Stratmann, F. (1997). A 2-D multicomponent modal aerosol model and its application to laminar flow reactors. Journal of Aerosol Science, 28(6), 959-972.
  • Zhang, Z., Kleinstreuer, C., & Hyun, S. (2012). Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model. Journal of Aerosol Science, 46, 34-52.