For segmentation tasks, please refer this github warehouse
For detection tasks(Based on DETR Detector architecture), please refer this github warehouse
conda env create -f environment.yml
├── datasets: Load datasets
├── my_dataset.py: Customize reading data sets and define transforms data enhancement methods
├── split_data.py: Define the function to read the image dataset and divide the training-set and test-set
├── threeaugment.py: Additional data augmentation methods
├── models: MobileNetV4 Model
├── build_models.py: Construct MobileNetV4 models
├── util:
├── engine.py: Function code for a training/validation process
├── losses.py: Knowledge distillation loss, combined with teacher model (if any)
├── optimizer.py: Define Sophia optimizer
├── samplers.py: Define the parameter of "sampler" in DataLoader
├── utils.py: Record various indicator information and output and distributed environment
├── estimate_model.py: Visualized evaluation indicators ROC curve, confusion matrix, classification report, etc.
└── train_gpu.py: Training model startup file (including infer process)
Before you use the code to train your own data set, please first enter the train_gpu.py file and modify the data_root, batch_size, num_workers and nb_classes parameters. If you want to draw the confusion matrix and ROC curve, you only need to set the predict parameter to True.
Moreover, you can set the opt_auc parameter to True if you want to optimize your model for a better performance(maybe~).
You can use anther optimizer sophia, just need to change the optimizer in train_gpu.py, for this training sample, can achieve better results
# optimizer = create_optimizer(args, model_without_ddp)
optimizer = SophiaG(model.parameters(), lr=2e-4, betas=(0.965, 0.99), rho=0.01, weight_decay=args.weight_decay)
1. nproc_per_node: <The number of GPUs you want to use on each node (machine/server)>
2. CUDA_VISIBLE_DEVICES: <Specify the index of the GPU corresponding to a single node (machine/server) (starting from 0)>
3. nnodes: <number of nodes (machine/server)>
4. node_rank: <node (machine/server) serial number>
5. master_addr: <master node (machine/server) IP address>
6. master_port: <master node (machine/server) port number>
If you want to use multiple GPU for training, whether it is a single machine with multiple GPUs or multiple machines with multiple GPUs, each GPU will divide the batch_size equally. For example, batch_size=4 in my train_gpu.py. If I want to use 2 GPUs for training, it means that the batch_size on each GPU is 4. Do not let batch_size=1 on each GPU, otherwise BN layer maybe report an error.
python train_gpu.py
python -m torch.distributed.run --nproc_per_node=8 train_gpu.py
(using a specified part of the GPUs: for example, I want to use the second and fourth GPUs)
CUDA_VISIBLE_DEVICES=1,3 python -m torch.distributed.run --nproc_per_node=2 train_gpu.py
(For the specific number of GPUs on each machine, modify the value of --nproc_per_node. If you want to specify a certain GPU, just add CUDA_VISIBLE_DEVICES= to specify the index number of the GPU before each command. The principle is the same as single-machine multi-GPU training)
On the first machine: python -m torch.distributed.run --nproc_per_node=1 --nnodes=2 --node_rank=0 --master_addr=<Master node IP address> --master_port=<Master node port number> train_gpu.py
On the second machine: python -m torch.distributed.run --nproc_per_node=1 --nnodes=2 --node_rank=1 --master_addr=<Master node IP address> --master_port=<Master node port number> train_gpu.py
python onnx_export.py --model=mobilenetv4_small --output=./mobilenetv4_small.onnx --checkpoint=./output/mobilenetv4_small_best_checkpoint.pth
python onnx_optimise.py --model=mobilenetv4_small --output=./mobilenetv4_small_optim.onnx'
python onnx_validate.py --data_root=/mnt/d/flower_data --onnx-input=./mobilenetv4_small_optim.onnx
@article{qin2024mobilenetv4,
title={MobileNetV4-Universal Models for the Mobile Ecosystem},
author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others},
journal={arXiv preprint arXiv:2404.10518},
year={2024}
}