Skip to content

Latest commit

 

History

History
118 lines (95 loc) · 6 KB

README.md

File metadata and controls

118 lines (95 loc) · 6 KB

MobileNetV4

This project is implemented in PyTorch, can be used to train your image-datasets for vision tasks.

For segmentation tasks, please refer this github warehouse

For detection tasks(Based on DETR Detector architecture), please refer this github warehouse

image

Preparation

Create conda virtual-environment

conda env create -f environment.yml

Download the dataset:

flower_dataset.

Project Structure

├── datasets: Load datasets
    ├── my_dataset.py: Customize reading data sets and define transforms data enhancement methods
    ├── split_data.py: Define the function to read the image dataset and divide the training-set and test-set
    ├── threeaugment.py: Additional data augmentation methods
├── models: MobileNetV4 Model
    ├── build_models.py: Construct MobileNetV4 models
├── util:
    ├── engine.py: Function code for a training/validation process
    ├── losses.py: Knowledge distillation loss, combined with teacher model (if any)
    ├── optimizer.py: Define Sophia optimizer
    ├── samplers.py: Define the parameter of "sampler" in DataLoader
    ├── utils.py: Record various indicator information and output and distributed environment
├── estimate_model.py: Visualized evaluation indicators ROC curve, confusion matrix, classification report, etc.
└── train_gpu.py: Training model startup file (including infer process)

Precautions

Before you use the code to train your own data set, please first enter the train_gpu.py file and modify the data_root, batch_size, num_workers and nb_classes parameters. If you want to draw the confusion matrix and ROC curve, you only need to set the predict parameter to True.
Moreover, you can set the opt_auc parameter to True if you want to optimize your model for a better performance(maybe~).

Use Sophia Optimizer (in util/optimizer.py)

You can use anther optimizer sophia, just need to change the optimizer in train_gpu.py, for this training sample, can achieve better results

# optimizer = create_optimizer(args, model_without_ddp)
optimizer = SophiaG(model.parameters(), lr=2e-4, betas=(0.965, 0.99), rho=0.01, weight_decay=args.weight_decay)

Train this model

Parameters Meaning:

1. nproc_per_node: <The number of GPUs you want to use on each node (machine/server)>
2. CUDA_VISIBLE_DEVICES: <Specify the index of the GPU corresponding to a single node (machine/server) (starting from 0)>
3. nnodes: <number of nodes (machine/server)>
4. node_rank: <node (machine/server) serial number>
5. master_addr: <master node (machine/server) IP address>
6. master_port: <master node (machine/server) port number>

Note:

If you want to use multiple GPU for training, whether it is a single machine with multiple GPUs or multiple machines with multiple GPUs, each GPU will divide the batch_size equally. For example, batch_size=4 in my train_gpu.py. If I want to use 2 GPUs for training, it means that the batch_size on each GPU is 4. Do not let batch_size=1 on each GPU, otherwise BN layer maybe report an error.

train model with single-machine single-GPU:

python train_gpu.py

train model with single-machine multi-GPU:

python -m torch.distributed.run --nproc_per_node=8 train_gpu.py

train model with single-machine multi-GPU:

(using a specified part of the GPUs: for example, I want to use the second and fourth GPUs)

CUDA_VISIBLE_DEVICES=1,3 python -m torch.distributed.run --nproc_per_node=2 train_gpu.py

train model with multi-machine multi-GPU:

(For the specific number of GPUs on each machine, modify the value of --nproc_per_node. If you want to specify a certain GPU, just add CUDA_VISIBLE_DEVICES= to specify the index number of the GPU before each command. The principle is the same as single-machine multi-GPU training)

On the first machine: python -m torch.distributed.run --nproc_per_node=1 --nnodes=2 --node_rank=0 --master_addr=<Master node IP address> --master_port=<Master node port number> train_gpu.py

On the second machine: python -m torch.distributed.run --nproc_per_node=1 --nnodes=2 --node_rank=1 --master_addr=<Master node IP address> --master_port=<Master node port number> train_gpu.py

ONNX Deployment

step 1: ONNX export (modify the param of output, model and checkpoint)

python onnx_export.py --model=mobilenetv4_small --output=./mobilenetv4_small.onnx --checkpoint=./output/mobilenetv4_small_best_checkpoint.pth

step2: ONNX optimise

python onnx_optimise.py --model=mobilenetv4_small --output=./mobilenetv4_small_optim.onnx'

step3: ONNX validate (modify the param of data_root and onnx-input)

python onnx_validate.py --data_root=/mnt/d/flower_data --onnx-input=./mobilenetv4_small_optim.onnx

Citation

@article{qin2024mobilenetv4,
  title={MobileNetV4-Universal Models for the Mobile Ecosystem},
  author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others},
  journal={arXiv preprint arXiv:2404.10518},
  year={2024}
}

Star History

Star History Chart