Releases: guillermo-navas-palencia/optbinning
Releases · guillermo-navas-palencia/optbinning
OptBinning 0.20.0
OptBinning 0.19.0
OptBinning 0.18.0
OptBinning 0.17.3
OptBinning 0.17.2
Improvements:
- Modify max-pvalue and min_diff constraints for CP and MIP formulation to avoid suboptimal solutions.
Bugfixes:
- Use keyword arguments in
compute_class_weight
#222. - Remove preprocessing step when monotonic trend in (ascending, descending) for scenario-based binning #216 .
Dependencies:
- Update scikit-learn and ortools required versions.
OptBinning 0.17.1
New features
- Add parameter
cat_unknown
to assign values to the unobserved categories during training.
Improvements
- Add method
decision_function
toScorecard
#198.
OptBinning 0.17.0
New features:
-
Optimize formulation of minimum difference constraints for all optimal binning classes and support these constraints regardless of the monotonic trend #201.
-
Implementation of sample weight for
ContinuousOptimalBinning
#131.
Bugfixes:
- Fix
ContinuousOptimalBinning
prebinning step when no prebinning splits were generated #205.
OptBinning 0.16.1
New features:
- Outlier detector
YQuantileDetector
for continuous target #203.
Improvements
- Add support to solver SCS and HIGHS for optimal piecewise binning classes.
- Unit testing outlier detector methods.
Bugfixes
- Pass
lb
andub
as keyword arguments to RoPWR fit method (required since ropwr>=0.4.0).
OptBinning 0.16.0
OptBinning 0.15.1
New features:
- New parameter
show_bin_labels
for binning tables #180.