Skip to content

Releases: guillermo-navas-palencia/optbinning

OptBinning 0.3.0

13 Mar 18:55
5e89cb9
Compare
Choose a tag to compare

New additions:

  • Class OptBinning introduces a new constraint to reduce dominating bins, using parameter gamma.
  • Metrics HHI, HHI regularized and Cramer's V added to binning_table.analysis method. Updated quality score.
  • Added column min/max target and zeros count to ContinuousOptimalBinning binning table.
  • Binning algorithms support univariate outlier detection methods.

Tutorials:

  • Tutorial: optimal binning with binary target. New section: Reduction of dominating bins.
  • Enhance binning process tutorials.

OptBinning 0.2.0

02 Feb 20:06
39177c2
Compare
Choose a tag to compare

New additions:

  • Binning process to support optimal binning of all variables in dataset.
  • Add print_output option to binning_table.analysis method.
  • New unit tests added.

Tutorials:

  • Tutorial: Binning process with Scikit-learn pipelines.
  • Tutorial: FICO Explainable Machine Learning Challenge using binning process.

Bugfixes:

  • Fix OptBinning.information print level default option.
  • Avoid numpy.digitize if no splits.
  • Compute Gini in binning_table.build method.

OptBinning 0.1.1

24 Jan 18:44
Compare
Choose a tag to compare

Bugfixes:

  • Fix a bug in OptimalBinning.fit_transform when calling tranform internally.
  • Replace np.int by np.int64 in model_data.py functions to guarantee 64-bit integer on Windows.
  • Fix a bug in _chech_metric_special_missing.

OptBinning 0.1.0

23 Jan 05:40
Compare
Choose a tag to compare

First release of OptBinning.