Releases: guillermo-navas-palencia/optbinning
Releases · guillermo-navas-palencia/optbinning
OptBinning 0.3.0
New additions:
- Class
OptBinning
introduces a new constraint to reduce dominating bins, using parametergamma
. - Metrics HHI, HHI regularized and Cramer's V added to
binning_table.analysis
method. Updated quality score. - Added column min/max target and zeros count to
ContinuousOptimalBinning
binning table. - Binning algorithms support univariate outlier detection methods.
Tutorials:
- Tutorial: optimal binning with binary target. New section: Reduction of dominating bins.
- Enhance binning process tutorials.
OptBinning 0.2.0
New additions:
- Binning process to support optimal binning of all variables in dataset.
- Add
print_output
option tobinning_table.analysis
method. - New unit tests added.
Tutorials:
- Tutorial: Binning process with Scikit-learn pipelines.
- Tutorial: FICO Explainable Machine Learning Challenge using binning process.
Bugfixes:
- Fix
OptBinning.information
print level default option. - Avoid numpy.digitize if no splits.
- Compute Gini in
binning_table.build
method.
OptBinning 0.1.1
Bugfixes:
- Fix a bug in
OptimalBinning.fit_transform
when callingtranform
internally. - Replace np.int by np.int64 in
model_data.py
functions to guarantee 64-bit integer on Windows. - Fix a bug in
_chech_metric_special_missing
.
OptBinning 0.1.0
First release of OptBinning.