Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Convert summary.simtrial_gs_wlr() to data.table #289

Merged
merged 1 commit into from
Sep 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,10 @@ export(wlr)
importFrom(Rcpp,sourceCpp)
importFrom(data.table,":=")
importFrom(data.table,.N)
importFrom(data.table,.SD)
importFrom(data.table,as.data.table)
importFrom(data.table,data.table)
importFrom(data.table,dcast)
importFrom(data.table,fifelse)
importFrom(data.table,frankv)
importFrom(data.table,last)
Expand Down
10 changes: 5 additions & 5 deletions R/as_gt.R
Original file line number Diff line number Diff line change
Expand Up @@ -120,17 +120,17 @@ as_gt.simtrial_gs_wlr <- function(x,
# build a gt table as return
ans <- x |>
gt::gt() |>
gt::tab_spanner(label = "Time", columns = ends_with("_time")) |>
gt::tab_spanner(label = "Events", columns = ends_with("_event")) |>
gt::tab_spanner(label = "N", columns = ends_with("_n")) |>
gt::tab_spanner(label = "Time", columns = gt::ends_with("_time")) |>
gt::tab_spanner(label = "Events", columns = gt::ends_with("_event")) |>
gt::tab_spanner(label = "N", columns = gt::ends_with("_n")) |>
gt::tab_spanner(
label = "Probability of crossing efficacy bounds under H1",
columns = ends_with("_upper_prob"))
columns = gt::ends_with("_upper_prob"))

if (design_type == "two-sided") {
ans <- ans |> gt::tab_spanner(
label = "Probability of crossing futility bounds under H1",
columns = ends_with("_lower_prob"))
columns = gt::ends_with("_lower_prob"))
}

ans |>
Expand Down
1 change: 1 addition & 0 deletions R/global.R
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ utils::globalVariables(
"cte",
"cross_lower",
"cross_upper",
"cut_date",
"dropout_rate",
"dropout_time",
"duration",
Expand Down
154 changes: 70 additions & 84 deletions R/summary.R
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,9 @@
#'
#' @rdname summary
#' @return A data frame
#'
#' @importFrom data.table ":=" .N .SD as.data.table dcast merge.data.table
#'
#' @export
#'
#' @examples
Expand Down Expand Up @@ -94,120 +97,103 @@ summary.simtrial_gs_wlr <- function(object,
n_analysis <- nrow(object[object$sim_id == 1, ])
n_sim <- nrow(object) / n_analysis

object <- as.data.table(object)
# if the design input is NULL
# then simply output the simulated n, event, power
if (is.null(design)) {
ans1 <- object |>
dplyr::group_by(analysis) |>
dplyr::summarize(sim_n = mean(n), sim_event = mean(event), sim_time = mean(cut_date))
ans1 <- object[,
.(
sim_n = mean(n),
sim_event = mean(event),
sim_time = mean(cut_date)
),
by = "analysis"]

ans2 <- object |>
dplyr::left_join(data.frame(analysis = 1:n_analysis, upper_bound = bound)) |>
dplyr::mutate(cross_upper = z >= upper_bound) |>
dplyr::filter(cross_upper == TRUE) |>
dplyr::group_by(sim_id) |>
dplyr::filter(dplyr::row_number() == 1) |>
dplyr::ungroup() |>
dplyr::group_by(analysis) |>
dplyr::summarize(n_cross_upper = dplyr::n()) |>
dplyr::mutate(sim_upper_prob = cumsum(n_cross_upper) / n_sim) |>
dplyr::select(analysis, sim_upper_prob)
bound_dt <- data.table(analysis = 1:n_analysis, upper_bound = bound)
ans2 <- merge.data.table(object, bound_dt, all.x = TRUE, sort = FALSE)
ans2[, cross_upper := z >= upper_bound]
ans2 <- ans2[cross_upper == TRUE, ]
ans2 <- ans2[, .SD[1], by = "sim_id"]
ans2 <- ans2[, .(n_cross_upper = .N), by = "analysis"]
ans2 <- ans2[order(analysis),
.(analysis, sim_upper_prob = cumsum(n_cross_upper) / n_sim)]

suppressMessages(
ans <- ans1 |> dplyr::left_join(ans2)
)
ans <- merge.data.table(ans1, ans2, all.x = TRUE)

attr(ans, "compare_with_design") <- "no"
} else {
# get the design type, 1-sided or 2-sided
design_type <- ifelse(length(unique(design$bound$bound)) == 1, "one-sided", "two-sided")
design_type <- if(length(unique(design$bound$bound)) == 1) "one-sided" else "two-sided"

# add the futility and efficacy bounds to the simulation results
if (design_type == "one-sided") {
suppressMessages(
sim_tbl <- object |>
dplyr::left_join(
design$bound |>
dplyr::select(analysis, z, bound) |>
dplyr::rename(upper_bound = z)
) |>
dplyr::mutate(cross_upper = z >= upper_bound)
)
bound_dt <- as.data.table(design$bound)
bound_dt <- bound_dt[, .(analysis, upper_bound = z, bound)]
sim_tbl <- merge.data.table(object, bound_dt, all.x = TRUE, sort = FALSE)
sim_tbl[, cross_upper := z >= upper_bound]
} else {
suppressMessages(
sim_tbl <- object |>
dplyr::left_join(
design$bound |>
dplyr::select(analysis, z, bound) |>
tidyr::pivot_wider(values_from = z, names_from = bound) |>
dplyr::rename(lower_bound = lower, upper_bound = upper)
) |>
dplyr::mutate(cross_lower = z <= lower_bound,
cross_upper = z >= upper_bound)
)
bound_dt <- as.data.table(design$bound)
bound_dt <- dcast(bound_dt, analysis ~ bound, value.var = "z")
bound_dt <- bound_dt[, .(analysis, lower_bound = lower, upper_bound = upper)]

sim_tbl <- merge.data.table(object, bound_dt, all.x = TRUE, sort = FALSE)
sim_tbl[, cross_lower := z <= lower_bound]
sim_tbl[, cross_upper := z >= upper_bound]
}

# calculate the prob of crossing efficacy bounds
tbl_upper <- sim_tbl |>
dplyr::filter(cross_upper == TRUE) |>
dplyr::group_by(sim_id) |>
dplyr::filter(dplyr::row_number() == 1) |>
dplyr::ungroup() |>
dplyr::group_by(analysis) |>
dplyr::summarize(n_cross_upper = dplyr::n()) |>
dplyr::mutate(sim_upper_prob = cumsum(n_cross_upper) / n_sim) |>
dplyr::select(analysis, sim_upper_prob)
tbl_upper <- sim_tbl[cross_upper == TRUE, ]
tbl_upper <- tbl_upper[, .SD[1], by = "sim_id"]
tbl_upper <- tbl_upper[, .(n_cross_upper = .N), by = "analysis"]
tbl_upper <- tbl_upper[order(analysis),
.(analysis, sim_upper_prob = cumsum(n_cross_upper) / n_sim)]

# calculate the prob of crossing futility bounds
if (design_type == "two-sided") {
tbl_lower <- sim_tbl |>
dplyr::filter(cross_lower == TRUE) |>
dplyr::group_by(sim_id) |>
dplyr::filter(dplyr::row_number() == 1) |>
dplyr::ungroup() |>
dplyr::group_by(analysis) |>
dplyr::summarize(n_cross_lower = dplyr::n()) |>
dplyr::mutate(sim_lower_prob = cumsum(n_cross_lower) / n_sim) |>
dplyr::select(analysis, sim_lower_prob)
tbl_lower <- sim_tbl[cross_lower == TRUE, ]
tbl_lower <- tbl_lower[, .SD[1], by = "sim_id"]
tbl_lower <- tbl_lower[, .(n_cross_lower = .N), by = "analysis"]
tbl_lower <- tbl_lower[order(analysis),
.(analysis, sim_lower_prob = cumsum(n_cross_lower) / n_sim)]
}

# combining prob of crossing efficacy and futility bounds under H1
if (design_type == "one-sided") {
tbl_asy_prob <- design$bound |>
dplyr::select(analysis, probability) |>
dplyr::rename(asy_upper_prob = probability)
tbl_asy_prob <- as.data.table(design$bound)
tbl_asy_prob <- tbl_asy_prob[, .(analysis, asy_upper_prob = probability)]
} else {
tbl_asy_prob <- design$bound |>
dplyr::select(analysis, bound, probability) |>
tidyr::pivot_wider(values_from = probability, names_from = bound) |>
dplyr::rename(asy_upper_prob = upper, asy_lower_prob = lower)
tbl_asy_prob <- as.data.table(design$bound)
tbl_asy_prob <- dcast(tbl_asy_prob, analysis ~ bound, value.var = "probability")
tbl_asy_prob <- tbl_asy_prob[, .(analysis, asy_upper_prob = upper, asy_lower_prob = lower)]
}

# calculate the number of analysis time, events and sample size
suppressMessages(
tbl_event <- object |>
dplyr::group_by(analysis) |>
dplyr::summarize(sim_event = mean(event),
sim_n = mean(n),
sim_time = mean(cut_date)) |>
dplyr::right_join(design$analysis |>
dplyr::select(analysis, time, n, event) |>
dplyr::rename(asy_time = time, asy_n = n, asy_event = event))
)
tbl_event <- object[,
.(
sim_event = mean(event),
sim_n = mean(n),
sim_time = mean(cut_date)
),
by = "analysis"]
analysis_dt <- as.data.table(design$analysis)
analysis_dt <- analysis_dt[,
.(
analysis,
asy_time = time,
asy_n = n,
asy_event = event
)]
tbl_event <- merge.data.table(tbl_event, analysis_dt, all.y = TRUE, sort = FALSE)
# combine all the information together
if (design_type == "one-sided") {
suppressMessages(
ans <- tbl_asy_prob |>
dplyr::left_join(tbl_upper) |>
dplyr::left_join(tbl_event)
)
ans <- tbl_asy_prob |>
merge.data.table(tbl_upper, all.x = TRUE, sort = FALSE) |>
merge.data.table(tbl_event, all.x = TRUE, sort = FALSE)
} else {
suppressMessages(
ans <- tbl_asy_prob |>
dplyr::left_join(tbl_upper) |>
dplyr::left_join(tbl_lower) |>
dplyr::left_join(tbl_event)
)
ans <- tbl_asy_prob |>
merge.data.table(tbl_upper, all.x = TRUE, sort = FALSE) |>
merge.data.table(tbl_lower, all.x = TRUE, sort = FALSE) |>
merge.data.table(tbl_event, all.x = TRUE, sort = FALSE)
}

attr(ans, "compare_with_design") <- "yes"
Expand Down