Skip to content

ADSCIAN/ssalib

Singular Spectrum Analysis Library (SSALib)

Tests Python Version Coverage License Development Status

Note

This repository contains a beta version of SSALib. User may use the issue tracker to provide feedback.

Overview

The Singular Spectrum Analysis Library (SSALib) is a Python package implementing the Singular Spectrum Analysis (SSA) univariate timeseries decomposition technique. It relies on different Singular Value Decomposition (SVD) methods from existing Python scientific packages and provides a convenient API along with plotting capabilities.

decomposed_signal.png

Key Features

  • Univariate SSA implementation with both Broemhead & King and Vautard and Ghil approaches
  • Multiple SVD solver options (NumPy, SciPy, scikit-learn)
  • Monte Carlo SSA for significance testing
  • Built-in visualization tools for analysis
  • Include example datasets
  • Comprehensive test coverage
  • Type-annotated codebase

Quick Start

Requirements

  • Python ≥ 3.9
  • NumPy
  • SciPy
  • Pandas
  • Matplotlib
  • Scikit-learn
  • Statsmodels

Installation

pip install git+https://github.com/ADSCIAN/vassal.git

Basic Usage

from ssalib import SingularSpectrumAnalysis
from ssalib.datasets import load_sst

# Load example data
ts = load_sst()

# Create SSA instance and decompose
ssa = SingularSpectrumAnalysis(ts)
ssa.decompose()

# Visualize results
fig, ax = ssa.plot(kind='values')

# Reconstruct groups
ssa.reconstruct(groups={'trend': [0, 1], 'seasonality': [2, 3]})

# Export
df_ssa = ssa.to_frame()

Available Datasets

Dataset Loading Function Description Time Range Source License
Mortality load_mortality() Daily counts of deaths in Belgium. 1992-01-01 to 2023-12-31 STATBEL Open Data
SST load_sst() Monthly mean sea surface temperature globally between 60° North and South. 1982-01-01 to 2023-12-31 Climate Reanalyzer CC-BY
Sunspots load_sunspots() Monthly mean total sunspot number. 1749-01 to 2023-12 Royal Observatory of Belgium CC-BY-NC

Available SVD Methods

SSALib supports multiple SVD solvers:

Solver Name Underlying Method Status
numpy_standard numpy.linalg.svd Default
scipy_standard scipy.linalg.svd Available
scipy_sparse scipy.sparse.linalg.svds Available
sklearn_randomized sklearn.utils.extmath.randomized_svd Available

Select the solver with the svd_solver argument.

from ssalib import SingularSpectrumAnalysis
from ssalib.datasets import load_sst

# Load example data
ts = load_sst()

# Create SSA instance with solver 'sklearn_randomized'
ssa = SingularSpectrumAnalysis(ts, svd_solver='sklearn_randomized')

Available Visualizations

kind Description Decomposition Required Reconstruction Required
matrix Plot the matrix or its group reconstruction Optional Optional
paired Plot pairs (x,y) of successive left-eigenvectors Yes No
periodogram Plot periodogram associated with eigenvectors Yes No
timeseries Plot original, preprocessed, or reconstructed time series Optional Optional
values Plot the singular values ranked by value norm or dominant component frequency Yes No
vectors Plot the left eigen vectors Yes No
wcorr Plot the weighted correlation matrix Yes No

Pass the kind argument to the SingularSpectrumAnalysis.plot method.

Documentation

For more in-depth examples and tutorials, check the Jupyter notebooks in the notebooks folder:

In more advanced tutorials, we cover:

References

The main references used to develop SSALib were:

  1. Golyandina, N., & Zhigljavsky, A. (2020). Singular Spectrum Analysis for Time Series. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-62436-4
  2. Hassani, H. (2007). Singular Spectrum Analysis: Methodology and Comparison. Journal of Data Science, 5(2), 239–257. https://doi.org/10.6339/JDS.2007.05(2).396
  3. Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 20(2), 217–236. https://doi.org/10.1016/0167-2789(86)90031-X
  4. Vautard, R., & Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3). https://doi.org/10.1016/0167-2789(89)90077-8
  5. Allen, M. R., & Smith, L. A. (1996). Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise. Journal of Climate, 9(12), 3373–3404. https://doi.org/10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2

How to Cite

Awaiting the release of the first non-beta version, you can refer to SSALib using:

@software{ssalib2024,
  author    = {Delforge, Damien and Alonso, Alice},
  title     = {{SSALib}: A {Python} Package for {Singular Spectrum Analysis}},
  year      = {2024},
  version   = {0.1.0b1},
  url       = {https://github.com/ADSCIAN/ssalib}
}