Note
This repository contains a beta version of SSALib. User may use the issue tracker to provide feedback.
The Singular Spectrum Analysis Library (SSALib) is a Python package implementing the Singular Spectrum Analysis (SSA) univariate timeseries decomposition technique. It relies on different Singular Value Decomposition (SVD) methods from existing Python scientific packages and provides a convenient API along with plotting capabilities.
- Univariate SSA implementation with both Broemhead & King and Vautard and Ghil approaches
- Multiple SVD solver options (NumPy, SciPy, scikit-learn)
- Monte Carlo SSA for significance testing
- Built-in visualization tools for analysis
- Include example datasets
- Comprehensive test coverage
- Type-annotated codebase
- Python ≥ 3.9
- NumPy
- SciPy
- Pandas
- Matplotlib
- Scikit-learn
- Statsmodels
Use
pip install git+https://github.com/ADSCIAN/ssalib.git
or
pip install vassal==0.1.0b1
from ssalib import SingularSpectrumAnalysis
from ssalib.datasets import load_sst
# Load example data
ts = load_sst()
# Create SSA instance and decompose
ssa = SingularSpectrumAnalysis(ts)
ssa.decompose()
# Visualize results
fig, ax = ssa.plot(kind='values')
# Reconstruct groups
ssa.reconstruct(groups={'trend': [0, 1], 'seasonality': [2, 3]})
# Export
df_ssa = ssa.to_frame()
Dataset | Loading Function | Description | Time Range | Source | License |
---|---|---|---|---|---|
Mortality | load_mortality() |
Daily counts of deaths in Belgium. | 1992-01-01 to 2023-12-31 | STATBEL | Open Data |
SST | load_sst() |
Monthly mean sea surface temperature globally between 60° North and South. | 1982-01-01 to 2023-12-31 | Climate Reanalyzer | CC-BY |
Sunspots | load_sunspots() |
Monthly mean total sunspot number. | 1749-01 to 2023-12 | Royal Observatory of Belgium | CC-BY-NC |
SSALib supports multiple SVD solvers:
Solver Name | Underlying Method | Status |
---|---|---|
numpy_standard |
numpy.linalg.svd |
Default |
scipy_standard |
scipy.linalg.svd |
Available |
scipy_sparse |
scipy.sparse.linalg.svds |
Available |
sklearn_randomized |
sklearn.utils.extmath.randomized_svd |
Available |
Select the solver with the svd_solver
argument.
from ssalib import SingularSpectrumAnalysis
from ssalib.datasets import load_sst
# Load example data
ts = load_sst()
# Create SSA instance with solver 'sklearn_randomized'
ssa = SingularSpectrumAnalysis(ts, svd_solver='sklearn_randomized')
kind |
Description | Decomposition Required | Reconstruction Required |
---|---|---|---|
matrix |
Plot the matrix or its group reconstruction | Optional | Optional |
paired |
Plot pairs (x,y) of successive left-eigenvectors | Yes | No |
periodogram |
Plot periodogram associated with eigenvectors | Yes | No |
timeseries |
Plot original, preprocessed, or reconstructed time series | Optional | Optional |
values |
Plot the singular values ranked by value norm or dominant component frequency | Yes | No |
vectors |
Plot the left eigen vectors | Yes | No |
wcorr |
Plot the weighted correlation matrix | Yes | No |
Pass the kind
argument to the SingularSpectrumAnalysis.plot
method.
For more in-depth examples and tutorials, check the Jupyter notebooks in the
notebooks
folder:
- Tutorial 1: Introduction to SSA
- Tutorial 2: Plotting Guide
- Tutorial 3: SVD Matrix Construction and Window Sizes
- Tutorial 4: Comparison of SVD Solvers and Speed Performances
In more advanced tutorials, we cover:
The main references used to develop SSALib were:
- Golyandina, N., & Zhigljavsky, A. (2020). Singular Spectrum Analysis for Time Series. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-62436-4
- Hassani, H. (2007). Singular Spectrum Analysis: Methodology and Comparison. Journal of Data Science, 5(2), 239–257. https://doi.org/10.6339/JDS.2007.05(2).396
- Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 20(2), 217–236. https://doi.org/10.1016/0167-2789(86)90031-X
- Vautard, R., & Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3). https://doi.org/10.1016/0167-2789(89)90077-8
- Allen, M. R., & Smith, L. A. (1996). Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise. Journal of Climate, 9(12), 3373–3404. https://doi.org/10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2
Awaiting the release of the first non-beta version, you can refer to SSALib using:
@software{ssalib2024,
author = {Delforge, Damien and Alonso, Alice},
title = {{SSALib}: A {Python} Package for {Singular Spectrum Analysis}},
year = {2024},
version = {0.1.0b1},
url = {https://github.com/ADSCIAN/ssalib}
}