A classification repo implemented with PyTorch on CIFAR-10 and ImageNet under different training conditions.
- Python 3.6+
- PyTorch 1.5.0-cu10.1
Training different architectures (PyTorch) on the CIFAR10 dataset without any tricks i.e., auto-augmentation, cutout, droppath, dropout. The learning rate is adjusted by the consine learning schedular, start from 0.1 with 300 epochs.
Model | Acc. | FLOPS | param | training time (hours) |
---|---|---|---|---|
Lenet | 77.56% | 0.65M | 0.06M | 0.63 |
googlenet | 95.26% | 1529M | 6.16M | 6.16 |
Mobilenet | 92.18% | 47M | 3.21M | 0.85 |
MobilenetV2 | 93.81% | 94M | 2.296M | 1.95 |
MobilenetV3Large | 92.89% | 79.4M | 2.688M | 1.76 |
MobilenetV3Small | 91.37% | 18.5M | 1.241M | 1.08 |
ResNet18 | 95.59% | 556M | 11.173M | 1.61 |
ResNet34 | 95.32% | 1161M | 21.282M | 1.99 |
ResNet50 | 95.74% | 1304M | 23.52M | 4.36 |
ResNet101 | 95.43% | 2520M | 42.51M | 7.07 |
ResNet152 | 95.91% | 3736M | 58.15M | 9.99 |
PreACtResNet18 | 95.37% | 556M | 11.17M | 1.22 |
PreACtResNet34 | 95.12% | 1161M | 21.27M | 1.96 |
PreACtResNet50 | 95.95% | 1303M | 23.50M | 4.28 |
PreACtResNet101 | 95.44% | 2519M | 42.50M | 6.98 |
PreACtResNet152 | 95.76% | 3735M | 58.14M | 9.92 |
SENet18 | 95.46% | 556M | 11.26M | 1.87 |
RegNetX_200MF | 95.19% | 226M | 2.32M | 2.83 |
RegNetX_400MF | 94.12% | 471M | 4.77M | 4.77 |
RegNetY_400MF | 95.51% | 472M | 5.71M | 4.91 |
ResNeXt29(32x4d) | 95.49% | 779M | 4.77M | 4.18 |
ResNeXt29(2x64d) | 95.41% | 1416M | 9.12M | 4.39 |
ResNeXt29(4x64d) | 95.76% | 4242M | 27.1M | 11.0 |
DenseNet121_Cifar | 95.28% | 128M | 1.0M | 2.46 |
DPN26 | 95.64% | 670M | 11.5M | 5.69 |
DPN92 | 95.66% | 2053M | 34.2M | 15.43 |
EfficientB0 | 93.24% | 112M | 3.69M | 2.92 |
NASNet | 95.18% | 615M | 3.83M | 14.7 |
AmoebaNet | 95.38% | 499M | 3.14M | 11.99 |
Darts_V1 | 95.05% | 511M | 3.16M | 11.69 |
Darts_V2 | 94.97% | 539M | 3.34M | 12.32 |
Training the models in basic train with:
cd ./pytorch-cifar-basic; python main.py --model_name resnet18
Code base: darts
Torch version: 1.5.0+cu101
Training different architectures (PyTorch) on the CIFAR10 dataset with and without tricks i.e., cutout, droppath, dropout. The learning rate is adjusted by the consine learning schedular, start from 0.025, batch size 96 with 600 epochs.
Model | Acc. | FLOPS | param | training time (hours) | Auxiliary Weight | Drop Path | Cutout |
---|---|---|---|---|---|---|---|
NASNet | 95.43% | 615M | 3.83M | 30.94 | FALSE | 0.2 | FALSE |
NASNet | 97.02% | 615M | 3.83M | 31.43 | 0.4 | 0.2 | 16 |
AmoebaNet | 95.71% | 499M | 3.14M | 25.90 | FALSE | 0.2 | FALSE |
AmoebaNet | 97.04% | 499M | 3.14M | 31.02 | 0.4 | 0.2 | 16 |
Darts_V1 | 95.42% | 511M | 3.16M | 25.96 | FALSE | 0.2 | FALSE |
Darts_V1 | 96.90% | 511M | 3.16M | 32.06 | 0.4 | 0.2 | 16 |
Darts_V2 | 95.42% | 539M | 3.34M | 28.39 | FALSE | 0.2 | FALSE |
Darts_V2 | 97.04% | 539M | 3.34M | 28.06 | 0.4 | 0.2 | 16 |
ResNet18 | 95.60% | 539M | 11.17M | 4.14 | FALSE | 0.2 | FALSE |
ResNet18 | 96.33% | 556M | 11.17M | 4.4 | 0.4 | 0.2 | 16 |
ResNet34 | 95.46% | 1161M | 21.28M | 7.56 | FALSE | 0.2 | FALSE |
ResNet34 | 96.84% | 1161M | 21.28M | 7.69 | 0.4 | 0.2 | 16 |
ResNet50 | 96.62% | 1304M | 23.52M | 11.51 | 0.4 | 0.2 | 16 |
ResNet101 | 95.97% | 2520M | 42.51M | 19.7 | FALSE | 0.2 | FALSE |
ResNet101 | 96.60% | 2520M | 42.51M | 19.7 | 0.4 | 0.2 | 16 |
ResNet152 | 95.81% | 3736M | 58.15M | 23.32 | FALSE | 0.2 | FALSE |
ResNet152 | 96.87% | 3736M | 58.15M | 23.32 | 0.4 | 0.2 | 16 |
Model: NASNet
Training condition
Namespace(auxiliary=True, auxiliary_weight=0.4, batch_size=96, cutout=True, cutout_length=16, data='/gdata/cifar10', drop_path_prob=0.2, epochs=600, gpu=0, grad_clip=5, init_channels=36, layers=20, learning_rate=0.025, model_name='nasnet', momentum=0.9, report_freq=50, seed=0, weight_decay=0.0003)
Version | Acc. | training time (hours) |
---|---|---|
1.5.0 | 97.02 | 31.43 |
1.0.1 | 96.79 | 32.7025 |
1.0.1.post2 | 97.11 | 40.8297 |
1.1.0 | 96.86 | 42.3611 |
1.2.0 | 96.79 | 40.7019 |
1.3.0 | 96.86 | 34.0188 |
1.3.1 | 96.69 | 41.6177 |
1.4.0 | 97.02 | 34.2972 |
Code base: pt.darts
Torch version: 1.5.0+cu101
Training different architectures (PyTorch) on the CIFAR10 dataset with and without tricks i.e., cutout, droppath, dropout. The learning rate is adjusted by the consine learning schedular, start from 0.025, batch size 96 with 600 epochs.
Model | Acc. | FLOPS | param | training time (hours) | Auxiliary Weight | Drop Path | Cutout |
---|---|---|---|---|---|---|---|
nasnet | 95.4400% | 3.842 M | 617.766 M | 42.70166666666667 | 0.0 | 0.0 | 0 |
nasnet | 97.0000% | 3.842 M | 617.766 M | 41.964166666666664 | 0.0 | 0.0 | 16 |
nasnet | 97.0500% | 3.842 M | 617.766 M | 34.02972222222222 | 0.4 | 0.0 | 16 |
nasnet | 97.3500% | 3.842 M | 617.766 M | 34.901666666666664 | 0.0 | 0.2 | 16 |
nasnet | 97.2600% | 3.842 M | 617.766 M | 43.99166666666667 | 0.4 | 0.2 | 16 |
amoebaNet | 95.4800% | 3.159 M | 502.452 M | 29.686944444444446 | 0.0 | 0.0 | 0 |
amoebaNet | 96.6600% | 3.159 M | 502.452 M | 35.30833333333333 | 0.0 | 0.0 | 16 |
amoebaNet | 97.1000% | 3.159 M | 502.452 M | 29.88388888888889 | 0.4 | 0.0 | 16 |
amoebaNet | 97.2100% | 3.159 M | 502.452 M | 30.70722222222222 | 0.0 | 0.2 | 16 |
amoebaNet | 97.2700% | 3.159 M | 502.452 M | 39.08416666666667 | 0.4 | 0.2 | 16 |
darts_v1 | 95.6000% | 3.172 M | 511.282 M | 33.687222222222225 | 0.0 | 0.0 | 0 |
darts_v1 | 96.5900% | 3.172 M | 511.282 M | 33.504444444444445 | 0.0 | 0.0 | 16 |
darts_v1 | 97.0200% | 3.172 M | 511.282 M | 28.069444444444443 | 0.4 | 0.0 | 16 |
darts_v1 | 97.0400% | 3.172 M | 511.282 M | 29.214444444444446 | 0.0 | 0.2 | 16 |
darts_v1 | 97.4000% | 3.172 M | 511.282 M | 28.534444444444443 | 0.4 | 0.2 | 16 |
darts_v2 | 95.3700% | 3.352 M | 539.400 M | 37.3325 | 0.0 | 0.0 | 0 |
darts_v2 | 96.6600% | 3.352 M | 539.400 M | 35.45583333333333 | 0.0 | 0.0 | 16 |
darts_v2 | 96.9300% | 3.352 M | 539.400 M | 29.53611111111111 | 0.4 | 0.0 | 16 |
darts_v2 | 97.1400% | 3.352 M | 539.400 M | 30.991666666666667 | 0.0 | 0.2 | 16 |
darts_v2 | 97.3100% | 3.352 M | 539.400 M | 30.696666666666665 | 0.4 | 0.2 | 16 |
resnet18 | 95.6800% | 11.174 M | 556.652 M | 5.518333333333333 | 0.0 | 0.0 | 0 |
resnet18 | 96.2600% | 11.174 M | 556.652 M | 4.373055555555555 | 0.0 | 0.0 | 16 |
resnet18 | 96.3600% | 11.174 M | 556.652 M | 4.455277777777778 | 0.4 | 0.0 | 16 |
resnet18 | 96.7100% | 11.174 M | 556.652 M | 4.530833333333334 | 0.0 | 0.2 | 16 |
resnet18 | 96.5200% | 11.174 M | 556.652 M | 4.525555555555556 | 0.4 | 0.2 | 16 |
resnet34 | 95.6900% | 21.282 M | 1161.450 M | 7.679444444444444 | 0.0 | 0.0 | 0 |
resnet34 | 96.5800% | 21.282 M | 1161.450 M | 7.641944444444444 | 0.0 | 0.0 | 16 |
resnet34 | 96.6300% | 21.282 M | 1161.450 M | 7.820277777777778 | 0.4 | 0.0 | 16 |
resnet34 | 97.0100% | 21.282 M | 1161.450 M | 7.695833333333334 | 0.0 | 0.2 | 16 |
resnet34 | 97.1000% | 21.282 M | 1161.450 M | 7.884722222222222 | 0.4 | 0.2 | 16 |
resnet50 | 95.8600% | 23.521 M | 1304.695 M | 14.504444444444445 | 0.0 | 0.0 | 0 |
resnet50 | 96.3800% | 23.521 M | 1304.695 M | 11.604166666666666 | 0.0 | 0.0 | 16 |
resnet50 | 96.3900% | 23.521 M | 1304.695 M | 11.538611111111111 | 0.4 | 0.0 | 16 |
resnet50 | 96.9100% | 23.521 M | 1304.695 M | 15.561111111111112 | 0.0 | 0.2 | 16 |
resnet50 | 96.8500% | 23.521 M | 1304.695 M | 12.244722222222222 | 0.4 | 0.2 | 16 |
resnet101 | 95.8700% | 42.513 M | 2520.191 M | 19.45638888888889 | 0.0 | 0.0 | 0 |
resnet101 | 96.7800% | 42.513 M | 2520.191 M | 25.238055555555555 | 0.4 | 0.0 | 16 |
resnet101 | 97.0800% | 42.513 M | 2520.191 M | 20.793055555555554 | 0.0 | 0.2 | 16 |
resnet101 | 97.1300% | 42.513 M | 2520.191 M | 20.718055555555555 | 0.4 | 0.2 | 16 |
resnet152 | 97.2100% | 58.157 M | 3736.474 M | 38.467777777777776 | 0.4 | 0.2 | 16 |
resnet152 | 95.9200% | 58.157 M | 3736.474 M | 28.16027777777778 | 0.0 | 0.0 | 0 |
resnet152 | 97.2400% | 58.157 M | 3736.474 M | 29.48611111111111 | 0.0 | 0.2 | 16 |
ResBasic | 95.9800% | 10.454 M | 1481.346 M | 11.79277777777777 | 0.0 | 0.0 | 0 |
ResBasic | 96.9500% | 10.454 M | 1481.346 M | 9.209166666666667 | 0.0 | 0.0 | 16 |
ResBasic | 97.2700% | 10.454 M | 1481.346 M | 9.278611111111111 | 0.4 | 0.0 | 16 |
ResBasic | 97.3300% | 10.454 M | 1481.346 M | 11.96388888888888 | 0.0 | 0.2 | 16 |
ResBasic | 97.3100% | 10.454 M | 1481.346 M | 9.5525 | 0.4 | 0.2 | 16 |
ResBottle | 96.3000% | 10.714 M | 1542.892 M | 13.6291666666666 | 0.0 | 0.0 | 0 |
ResBottle | 96.6800% | 10.714 M | 1542.892 M | 13.6183333333333 | 0.0 | 0.0 | 16 |
ResBottle | 96.8900% | 10.714 M | 1542.892 M | 16.8761111111111 | 0.4 | 0.0 | 16 |
ResBottle | 97.0900% | 10.714 M | 1542.892 M | 17.9744444444444 | 0.0 | 0.2 | 16 |
ResBottle | 96.9700% | 10.714 M | 1542.892 M | 17.8675 | 0.4 | 0.2 | 16 |
PreBasic_res_cell_64_2_20 | 96.9000% | 10.453 M | 1481.346M | 12.13 | 0.4 | 0.2 | 16 |
PreBasic_rescell_36_3_20 | 96.5500% | 14.192 M | 1314.440M | 10.10 | 0.4 | 0.2 | 16 |
PreBottleNeck_res_cell_64_2_20 | 96.7900% | 10.709M | 1541.974 M | 17.71 | 0.4 | 0.2 | 16 |
PreBottleNeck_rescell_36_3_20 | 96.5400% | 14.375M | 1364.216 M | 14.35 | 0.4 | 0.2 | 16 |
basic_rescell_36_3_20 | 97.1400% | 14.194 M | 1314.504 M | 12.8383333 | 0.4 | 0.2 | 16 |
bottleNeck_rescell_36_3_20 | 96.7200% | 14.381 M | 1364.990 M | 17.65 | 0.4 | 0.2 | 16 |
Model | Acc. | FLOPS | param |
---|---|---|---|
16_20_2_4 | 95.22 | 53 | 0.35 |
16_20_4_4 | 96.48 | 335 | 4.04 |
16_40_2_4 | 96.3 | 99 | 0.65 |
16_40_4_4 | 96.76 | 642 | 7.97 |
32_20_2_4 | 96.26 | 203 | 1.36 |
32_40_2_4 | 96.96 | 379 | 2.56 |
Code base: py_cls
Torch version: 1.5.0+cu101