-
Notifications
You must be signed in to change notification settings - Fork 0
/
rts_smooth.m
77 lines (71 loc) · 1.95 KB
/
rts_smooth.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
%RTS_SMOOTH Rauch-Tung-Striebel smoother
%
% Syntax:
% [M,P,S] = RTS_SMOOTH(M,P,A,Q)
%
% In:
% M - NxK matrix of K mean estimates from Kalman filter
% P - NxNxK matrix of K state covariances from Kalman Filter
% A - NxN state transition matrix or NxNxK matrix of K state
% transition matrices for each step.
% Q - NxN process noise covariance matrix or NxNxK matrix
% of K state process noise covariance matrices for each step.
%
% Out:
% M - Smoothed state mean sequence
% P - Smoothed state covariance sequence
% D - Smoother gain sequence
%
% Description:
% Rauch-Tung-Striebel smoother algorithm. Calculate "smoothed"
% sequence from given Kalman filter output sequence
% by conditioning all steps to all measurements.
%
% Example:
% m = m0;
% P = P0;
% MM = zeros(size(m,1),size(Y,2));
% PP = zeros(size(m,1),size(m,1),size(Y,2));
% for k=1:size(Y,2)
% [m,P] = kf_predict(m,P,A,Q);
% [m,P] = kf_update(m,P,Y(:,k),H,R);
% MM(:,k) = m;
% PP(:,:,k) = P;
% end
% [SM,SP] = rts_smooth(MM,PP,A,Q);
%
% See also:
% KF_PREDICT, KF_UPDATE
% Copyright (C) 2003-2006 Simo Särkkä
%
% $Id$
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [M,P,D] = rts_smooth(M,P,A,Q)
%
% Check which arguments are there
%
if nargin < 4
error('Too few arguments');
end
%
% Extend A and Q if they are NxN matrices
%
if size(A,3)==1
A = repmat(A,[1 1 size(M,2)]);
end
if size(Q,3)==1
Q = repmat(Q,[1 1 size(M,2)]);
end
%
% Run the smoother
%
D = zeros(size(M,1),size(M,1),size(M,2));
for k=(size(M,2)-1):-1:1
P_pred = A(:,:,k) * P(:,:,k) * A(:,:,k)' + Q(:,:,k);
D(:,:,k) = P(:,:,k) * A(:,:,k)' / P_pred;
M(:,k) = M(:,k) + D(:,:,k) * (M(:,k+1) - A(:,:,k) * M(:,k));
P(:,:,k) = P(:,:,k) + D(:,:,k) * (P(:,:,k+1) - P_pred) * D(:,:,k)';
end