This code implements Multiscale Graph Convolutional Network (MGCN) in our SIGGRAPH 2020 paper:
"MGCN: Descriptor Learning using Multiscale GCNs"
by Yiqun Wang, Jing Ren, Dong-Ming Yan, Jianwei Guo, Xiaopeng Zhang, Peter Wonka.
Please consider citing the above paper if this code/program (or part of it) benefits your project.
conda create -n MGCN python=3.7 # (options: 3.X)
source activate MGCN # (create and activate new environment if you use Anaconda)
conda install pytorch=1.5.0 torchvision cudatoolkit=10.1 -c pytorch # (options: 10.X)
pip install torch-scatter==2.0.4+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
pip install torch-sparse==0.6.3+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
pip install torch-cluster==1.5.4+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
pip install torch-geometric==1.4.3
-
Put models in the folder MGCN/datasets/Faust/data_mesh/ for FAUST dataset or MGCN/datasets/Scape/data_mesh/ for SCAPE dataset
-
generate Wavelet Energy Decomposition Signature (WEDS) descriptors and wavelets using Repository WEDS or directly download processed data (traning.pt and test.pt) below and put them into the folder MGCN/datasets/Faust/processed/ or MGCN/datasets/Scape/processed/.
-
Training examples
# for FAUST
python MGCN_FAUST.py
# for SCAPE
python MGCN_SCAPE.py
- Restore checkpoint and generate descriptors
# for FAUST
python MGCN_FAUST.py --uc --gd -l --ln=mgcn_faust-300
# for SCAPE
python MGCN_SCAPE.py --uc --gd -l --ln=mgcn_scape-300
- Dense correspondence can be obtained by directly computing the nearest-neighbor using the L2 distance in descriptor space, and this Repository can be used to visualize the descriptors.
Processed Dataset | Download Link | Description |
---|---|---|
FAUST original | Google Drive, 1G | 75 models for training and 15 models for testing (6890 points) |
FAUST 5 resolutions | Google Drive, 1G | 15 X 5 models for testing (6890, 8K, 10K, 12K, 15K points) |
SCAPE remeshed | Google Drive, 623M | 61 models for training and 10 models for testing (~5K points) |
SCAPE original | Google Drive, 218M | 10 models for testing (12.5K points) |
@article{wang2020mgcn,
title= {MGCN: Descriptor Learning using Multiscale GCNs},
author= {Wang, Yiqun and Ren, Jing and Yan, Dong-Ming and Guo, Jianwei and Zhang, Xiaopeng and Wonka, Peter},
journal= {ACM Trans. on Graphics (Proc. {SIGGRAPH})},
year= {2020},
}
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.