Analysed Tweets and classified it into categories- positive, negative, neutral.
- Imported dataset
- Analysed data
- Used Count Vectorizer
- Prediction using SVC
- Prediction using Random Forest
- Prediction using Multinomial Naive Bayes
- Applied Grid Search Cross Validation
- Comparison between various classifier
- SVC : 0.633
- Random Forest : 0.723
- Multinomial Naive Bayes : 0.755
Best accuracy comes from Multinomial Naive Bayes.
git clone https://github.com/wikiabhi/Twitter-Sentiment-Analysis.git
MIT License
Copyright (c) 2018 Abhishek