Skip to content

wikiabhi/Twitter-Sentiment-Analysis

Repository files navigation

Twitter-Sentiment-Analysis

Abstract:

Analysed Tweets and classified it into categories- positive, negative, neutral.

Approach

  • Imported dataset
  • Analysed data
  • Used Count Vectorizer
  • Prediction using SVC
  • Prediction using Random Forest
  • Prediction using Multinomial Naive Bayes
  • Applied Grid Search Cross Validation
  • Comparison between various classifier

Results

  • SVC : 0.633
  • Random Forest : 0.723
  • Multinomial Naive Bayes : 0.755

Conclusion

Best accuracy comes from Multinomial Naive Bayes.

Clone the Project:

git clone https://github.com/wikiabhi/Twitter-Sentiment-Analysis.git

MIT License Copyright (c) 2018 Abhishek