Skip to content

warriorwizard/FashionGan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FashionGan

Requirements

  • tensorflow 1.14
  • matplotlib
  • pillow
  • tqdm
  • numpy
  • pandas
  • seaborn
  • scikit-learn
  • scipy
  • jupyter
  • opencv-python
  • imageio
  • h5py
  • requests
  • python 3.6

Usage

Training

To train the model, run python train.py with the following arguments:

usage: train.py [-h] [--epochs EPOCHS] [--batch_size BATCH_SIZE]
                [--sample_interval SAMPLE_INTERVAL]
                [--checkpoint_interval CHECKPOINT_INTERVAL]
                [--checkpoint_dir CHECKPOINT_DIR] [--dataset DATASET]
                [--data_dir DATA_DIR] [--image_size IMAGE_SIZE]
                [--num_workers NUM_WORKERS] [--latent_dim LATENT_DIM]
                [--lr LR] [--beta1 BETA1] [--beta2 BETA2] [--n_critic N_CRITIC]
                [--clip_value CLIP_VALUE] [--img_channels IMG_CHANNELS]
                [--img_shape IMG_SHAPE]

optional arguments:
  -h, --help            show this help message and exit
  --epochs EPOCHS       number of epochs of training
  --batch_size BATCH_SIZE
                        size of the batches
  --sample_interval SAMPLE_INTERVAL
                        interval between image sampling
  --checkpoint_interval CHECKPOINT_INTERVAL
                        interval between saving model checkpoints
  --checkpoint_dir CHECKPOINT_DIR
                        directory for saving model checkpoints
  --dataset DATASET     dataset to train on
  --data_dir DATA_DIR   directory containing the dataset
  --image_size IMAGE_SIZE
                        size of each image dimension
  --num_workers NUM_WORKERS
                        number of workers for dataloader
  --latent_dim LATENT_DIM
                        dimensionality of the latent space
  --lr LR               learning rate
  --beta1 BETA1         adam: decay of first order momentum of gradient
  --beta2 BETA2         adam: decay of first order momentum of gradient
  --n_critic N_CRITIC   number of training steps for discriminator per iter
  --clip_value CLIP_VALUE
                        lower and upper clip value for disc. weights
  --img_channels IMG_CHANNELS
                        number of image channels
  --img_shape IMG_SHAPE
                        shape of each image

Testing

To test the model, run python test.py with the following arguments

About

Created simple GAN for generation random fashion

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published