-
This code is used for Hubert based estimation done in Pytorch by Zih-Ching at NTU.
-
Noted: for conformer related implementation, please refer to
lingvo/asr
from tensorflow and Logme_CTC are done by Huck during Google.
Adapter with layer 1-5 feature (7-9 features) (can choose a batch)
- examining the correlation, check if outliers should be
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
- open a github repo LogME CTC
- per classification error
- week 2 ctc alignment
- week 3 posterior ( know whats estimation) layer-wise shape difference --> may need some normalization or reshape
- tune each transformer layer, and report the PR result
1.1 rank the result by performance (e.g. get the ground truth rank
5, 3, 1, 2, 4
) (tune the first layer showed a worse result) - feature hypothesis score per layer (showing the 1-12 list containing the ranking)
- calculate the coeff score (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html)
- 1/16 update
- KS results, 352 features.
todo: KS feature with more samples (1280) / PR results!!!
Can estimate before/after weighted sum to verify the power of weighted sum in the superb model
- KS results, 352 features.
todo: KS feature with more samples (1280) / PR results!!!
- 1/27 update
- PR framewise ctc with normalization correlation ~= 0.6-0.9
1/27 Conduct experiments on different tuned layer on PR
Corr = 0.9650
Layer selection | Ground truth score (PER) | Ground truth ranking | LogME score (15 sample average) | LogME ranking |
---|---|---|---|---|
Layer 0 | 0.3629 | 12 | 171064 | 11 |
Layer 1 | 0.3041 | 9 | 171425 | 10 |
Layer 2 | 0.2801 | 8 | 174496 | 8 |
Layer 3 | 0.2600 | 7 | 175383 | 7 |
Layer 4 | 0.2393 | 6 | 176914 | 6 |
Layer 5 | 0.1978 | 5 | 176952 | 5 |
Layer 6 | 0.1443 | 4 | 179810 | 4 |
Layer 7 | 0.1082 | 3 | 183304 | 3 |
Layer 8 | 0.0842 | 2 | 185155 | 2 |
Layer 9 | 0.0700 | 1 | 186503 | 1 |
Layer 10 | 0.30562 | 10 | 169948 | 12 |
Layer 11 | 0.3108 | 11 | 172545 | 9 |
Corr = 0.9720
Layer selection | Ground truth score (PER) | Ground truth ranking | LogME score (15 sample average) | LogME ranking |
---|---|---|---|---|
Layer 0 | 0.3629 | 12 | 436972.82 | 12 |
Layer 1 | 0.3041 | 9 | 467941.06 | 11 |
Layer 2 | 0.2801 | 8 | 484796.32 | 8 |
Layer 3 | 0.2600 | 7 | 514636.06 | 7 |
Layer 4 | 0.2393 | 6 | 550989.88 | 6 |
Layer 5 | 0.1978 | 5 | 587134.96 | 5 |
Layer 6 | 0.1443 | 4 | 645619.82 | 4 |
Layer 7 | 0.1082 | 3 | 685041.40 | 3 |
Layer 8 | 0.0842 | 2 | 712807.86 | 2 |
Layer 9 | 0.0700 | 1 | 732151.98 | 1 |
Layer 10 | 0.30562 | 10 | 473665.90 | 10 |
Layer 11 | 0.3108 | 11 | 483468.14 | 9 |
SpearmanrResult(correlation=0.0388702286384894, pvalue=0.9045352388039742) SpearmanrResult(correlation=-0.18021651459663265, pvalue=0.5751510589103314)
Layer selection | Ground truth score (ACC) | Ground truth ranking | LogME score (352 samples) | LogME ranking | LogME score (1280 samples) | LogME ranking |
---|---|---|---|---|---|---|
Layer 0 | 0.9594 | 11 | 860.6594 | 12 | 216.70060116005945 | 12 |
Layer 1 | 0.9685 | 8 | 867.4900 | 1* | 220.16220357728966 | 2 |
Layer 2 | 0.9707 | 7 | 862.0167 | 9 | 217.88268878525855 | 6 |
Layer 3 | 0.9717 | 2* | 861.6354 | 11 | 217.5072657897209 | 8 |
Layer 4 | 0.9704 | 6 | 862.6105 | 7 | 217.99726995086723 | 4 |
Layer 5 | 0.9730 | 1 | 861.8401 | 10 | 215.81330414137128 | 11 |
Layer 6 | 0.9717 | 2* | 863.4720 | 4 | 217.25007556728053 | 9 |
Layer 7 | 0.9652 | 4* | 863.0927 | 6 | 217.00730909803124 | 10 |
Layer 8 | 0.9626 | 12 | 862.6008 | 8 | 217.92559485329946 | 5 |
Layer 9 | 0.9678 | 9 | 863.0995 | 5 | 217.58671705236853 | 7 |
Layer 10 | 0.9711 | 4* | 867.4900 | 1* | 220.16220357728966 | 2 |
Layer 11 | 0.9711 | 4* | 864.715 | 3 | 220.65682721038425 | 1 |
SpearmanrResult(correlation=0.0388702286384894, pvalue=0.9045352388039742) SpearmanrResult(correlation=-0.18021651459663265, pvalue=0.5751510589103314)
Layer selection | Ground truth score (ACC) | Ground truth ranking | LogME score (352 samples) | LogME ranking | LogME score (1280 samples) | LogME ranking |
---|---|---|---|---|---|---|
Layer 0 | 0.9665 | 11 | 227.48 | 12 | 216.70060116005945 | 12 |
Layer 1 | 0.9685 | 9 | 200.84 | 1* | 220.16220357728966 | 2 |
Layer 2 | 0.9694 | 8 | 227.91 | 9 | 217.88268878525855 | 6 |
Layer 3 | 0.9717 | 5 | - | 11 | 217.5072657897209 | 8 |
Layer 4 | 0.9740 | 2 | 228.54 | 7 | 217.99726995086723 | 4 |
Layer 5 | 0.9746 | 1 | 227.30 | 10 | 215.81330414137128 | 11 |
Layer 6 | 0.9711 | 6 | 223.77 | 4 | 217.25007556728053 | 9 |
Layer 7 | 0.9698 | 7 | 224.64 | 6 | 217.00730909803124 | 10 |
Layer 8 | 0.9655 | 12 | 226.53 | 8 | 217.92559485329946 | 5 |
Layer 9 | 0.9681 | 10 | ------ | 5 | 217.58671705236853 | 7 |
Layer 10 | 0.9720 | 3* | ------ | 1* | 220.16220357728966 | 2 |
Layer 11 | 0.9720 | 3* | ------ | 3 | 220.65682721038425 | 1 |
Upstream models | Ground truth score (ACC) | Ground truth ranking | LogME Score 1280 samples | LogME ranking |
---|---|---|---|---|
Hubert_base | 95.94 | 1 | 218.576 | 1 |
Wav2vec2.0 | 92.27 | 3 | 212.152 | 3 |
Decoar2 | 92.63 | 2 | 217.289 | 2 |
If you think this work would help your research or if got some ideas from the code, please consider referencing our paper.
Thank you!
@inproceedings{chen23j_interspeech,
author={Zih-Ching Chen and Chao-Han Huck Yang and Bo Li and Yu Zhang and Nanxin Chen and Shuo-Yiin Chang and Rohit Prabhavalkar and Hung-yi Lee and Tara Sainath},
title={{How to Estimate Model Transferability of Pre-Trained Speech Models?}},
year=2023,
booktitle={Proc. INTERSPEECH 2023},
pages={456--460},
doi={10.21437/Interspeech.2023-1079}
}