Skip to content

vctrop/bank_of_metaheuristics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

91 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bank of metaheuristics

Accurate and comprehensible implementation of multiple metaheuristics.

Third party software versions:

  • Python 3.6.9
    • NumPy 1.17.3 (vector math)
    • Deap 1.3 (only to import benchmark functions)

Metaheuristics implemented up to now:

- Ant colony optimization for continuous domains (ACOr).    Socha, 2006.
- Adaptive elitism level ACOr (AELACOr).                    Costa, 2020.
- Adaptive generation dispersion ACOr (AGDACOr).            Costa, 2020.
- Bi-adaptive ACOr (MAACOr).                                Costa, 2020.
- Simulated annealing (SA).                                 Kirkpatrick, 1983.
- Adaptive crystallization factor SA (ACFSA).               Martins, 2012.
- Particle swarm optimization (PSO).                        Kennedy, 1995.
- Adaptive inertia weight PSO (AIWPSO).                     Nickabadi, 2011.

List of modules

  • base_metaheuristic.py
    • simulated_annealing.py
    • particle_swarm_optimization.py
    • ant_colony_for_continuous_domains.py

Scripts and their uses

  • apply_metaheuristics.py - Uses all metaheuristics to search for minimum values of a given benchmark (mostly used for verification purposes)
  • lin_sig_exp_experiment.py - Extracts results for AELACOr and AGDACOr considering different maps from the colony success rate to parameter values
  • lin_sig_exp_stats.py - Displays summary statistics for the results from lin_sig_exp_experiment.py
  • metaheuristic_test_functions_experiment.py - Collects results for a given metaheuristics in a set of test function instances.
  • metaheuristic_results_tables.py - Displays summary statistics and statistical significance of the results from metaheuristic_test_functions_experiment.py
  • metaheuristic_results_plot.py - Plots the average search history of each metaheuristic, considering results from metaheuristic_test_functions_experiment.py

If this repository is valuable to you, consider citing:

Costa, V. O. and Müller, M. F. (2020). "On the Multiple Possible Adaptive Mechanisms of the Continuous Ant Colony Optimization". 9th Brazilian Conference on Intelligent Systems, BRACIS (2020).