Skip to content

Commit

Permalink
numpy fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
bcebere committed Dec 20, 2022
1 parent 72b0b9e commit 5f9ba95
Show file tree
Hide file tree
Showing 4 changed files with 3 additions and 7 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ def __init__(
criterion: int = 0,
max_features: int = 0,
min_samples_split: int = 2,
bootstrap: bool = True,
min_samples_leaf: int = 1,
max_depth: Optional[int] = 3,
random_state: int = 0,
Expand All @@ -66,7 +65,6 @@ def __init__(
max_features=RandomForestPlugin.features[max_features],
min_samples_split=min_samples_split,
max_depth=max_depth,
bootstrap=bootstrap,
min_samples_leaf=min_samples_leaf,
random_state=random_state,
n_jobs=max(1, int(multiprocessing.cpu_count() / 2)),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ def __init__(
criterion: int = 0,
max_features: int = 0,
min_samples_split: int = 2,
bootstrap: bool = True,
min_samples_leaf: int = 1,
max_depth: Optional[int] = 3,
hyperparam_search_iterations: Optional[int] = None,
Expand All @@ -67,7 +66,6 @@ def __init__(
max_features=RandomForestRegressionPlugin.features[max_features],
min_samples_split=min_samples_split,
max_depth=max_depth,
bootstrap=bootstrap,
min_samples_leaf=min_samples_leaf,
random_state=random_state,
n_jobs=max(1, int(multiprocessing.cpu_count() / 2)),
Expand Down
2 changes: 1 addition & 1 deletion src/hyperimpute/version.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
__version__ = "0.1.11"
__version__ = "0.1.12"
MAJOR_VERSION = "0.1"
4 changes: 2 additions & 2 deletions tests/integrations/test_sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,8 @@ def _eval_imputer_pipeline(test_imputer: str) -> None:
n_missing_samples = int(np.floor(n_samples * missing_rate))
missing_samples = np.hstack(
(
np.zeros(n_samples - n_missing_samples, dtype=np.bool),
np.ones(n_missing_samples, dtype=np.bool),
np.zeros(n_samples - n_missing_samples, dtype=bool),
np.ones(n_missing_samples, dtype=bool),
)
)
rng.shuffle(missing_samples)
Expand Down

0 comments on commit 5f9ba95

Please sign in to comment.