Skip to content

Prediction of rainfall which varies both spatially and temporally is extremely challenging. Infrared and visible spectral data from satellites have been extensively used for rainfall prediction. In this study, two deep learning methods MLP and LSTM are discussed at length for predicting precipitation at a fine spatial (10km × 10km) and temporal …

License

Notifications You must be signed in to change notification settings

urmilkadakia/Rainfall-prediction-for-the-state-of-Gujarat-using-deep-learning-technique

Repository files navigation

Rainfall-prediction-for-the-state-of-Gujarat-using-deep-learning-technique

Prediction of rainfall which varies both spatially and temporally is extremely challenging. Infrared and visible spectral data from satellites have been extensively used for rainfall prediction. In this study, two deep learning methods MLP and LSTM are discussed at length for predicting precipitation at a fine spatial (10km × 10km) and temporal (hourly) resolution for the state of Gujarat. These methods are applied by using the multispectral (VIS, SWIR, MIR, WV, TIR1, TIR2) channel data such as cloud top temperature and radiance values of the INSAT-3D satellite (ISRO) as features for the model. Textural features of satellite images are incorporated by considering mean and standard deviation of each pixel’s neighbourhood. Rainfall also heavily depends on the elevation and vegetation of earth’s surface so we have used SRTM DEM and AWIFS NDVI respectively. Measurements of actual rainfall are obtained from AWS (point source stations) and TRMM (10km × 10km resolution). First dataset contains only TIR1 band temperature and AWS rainfall data for training but the second dataset includes multispectral channel data and TRMM rainfall data which brought about great improvement in results. For each data- set, a comparison between MLP and LSTM models is discussed here. We were able to classify the rainfall into nil (0mm), low ( < 2mm), medium ( > = 2mm and < 5mm) and high ( > = 5 mm) with a high accuracy. Metrics like accuracy, precision, recall and fscore have been computed to get better insights about the dataset and its corresponding outcome. Our results show that LSTM performs significantly better than MLP for any given balanced class data-sets.

About

Prediction of rainfall which varies both spatially and temporally is extremely challenging. Infrared and visible spectral data from satellites have been extensively used for rainfall prediction. In this study, two deep learning methods MLP and LSTM are discussed at length for predicting precipitation at a fine spatial (10km × 10km) and temporal …

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published