Using Deep Learning for Demand Forecasting with Amazon SageMaker
-
Updated
Sep 14, 2022 - Python
Using Deep Learning for Demand Forecasting with Amazon SageMaker
Projetos de modelagem e previsão de séries temporal em linguagem Python e linguagem R. Usarei vários modelos de bibliotecas e pacotes usados para tratamento, modelagem e previsão de séries temporais. Falarei um pouco sobre cada uma delas, gerarei a validação e as previsões e, por fim, realizarei a avaliação com a métricas pertinentes.
Time Series Forecasting for the M5 Competition
GluonTS Deep Learning with Modeltime
GPU-Accelerated Deep Learning for Time Series using Modeltime GluonTS (Learning Lab 53). Event sponsors: Saturn Cloud, NVIDIA, & Business Science.
Dataiku DSS plugin to automate time series forecasting with Deep Learning and statistical models 📈
Learn how to train and evaluate time series models with the Gluon TS library, and then deploy them for inference as a Multi-Model Server SageMaker endpoint using a custom SageMaker container.
Sample GluonTS entrypoint scripts for Amazon SageMaker.
multivariate time series
DeepAR implementation for seasonal influenza cases in German districts
An autoregressive forecasting implementation of a LSTM network, NBEATS architecture, ARIMA and SARIMAX regressions, and Autoformer architecture on rupee dollar exchange rates using pytorch, pytorch lightning, pytorch-forecasting, and GluonTS
Comprehensive guide to time series forecasting using deep learning techniques, with practical examples and tutorials.
Add a description, image, and links to the gluonts topic page so that developers can more easily learn about it.
To associate your repository with the gluonts topic, visit your repo's landing page and select "manage topics."