You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Paper to Code automates the incorporation of research paper concepts into practical code using OpenAI's GPT models, bridging theory and implementation.
As the learning rate is one of the most important hyper-parameters to tune for training convolutional neural networks. In this paper, a powerful technique to select a range of learning rates for a neural network that named cyclical learning rate was implemented with two different skewness degrees. It is an approach to adjust where the value is c…
Using the pre-trained ImageNet models and cyclical learning rates, we tried to classify the DeepSAT-6 dataset (https://csc.lsu.edu/~saikat/deepsat/) into 6 categories (barren land, trees, grassland, roads, buildings and water bodies). Due to the absence of occlusion by the cloud, we dropped the NIR channel of the data.