Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sharded sweep tests #15246

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 17 additions & 9 deletions .github/workflows/ttnn-run-sweeps.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -172,15 +172,23 @@ on:
- eltwise.binary_complex.add_bw.add_bw
- eltwise.binary_complex.sub_bw.sub_bw
- eltwise.binary_complex.mul_bw.mul_bw
- eltwise.unary.lgamma
- eltwise.unary.logit
- eltwise.unary.mish
- eltwise.unary.multigammaln
- eltwise.unary.isfinite
- eltwise.unary.isinf
- eltwise.unary.isnan
- eltwise.unary.isneginf
- eltwise.unary.isposinf
- eltwise.unary.lgamma.lgamma
- eltwise.unary.lgamma.lgamma_sharded
- eltwise.unary.logit.logit
- eltwise.unary.logit.logit_sharded
- eltwise.unary.mish.mish
- eltwise.unary.mish.mish_sharded
- eltwise.unary.multigammaln.multigammaln
- eltwise.unary.isfinite.isfinite
- eltwise.unary.isfinite.isfinite_sharded
- eltwise.unary.isinf.isinf
- eltwise.unary.isinf.isinf_sharded
- eltwise.unary.isnan.isnan
- eltwise.unary.isnan.isnan_sharded
- eltwise.unary.isneginf.isneginf
- eltwise.unary.isneginf.isneginf_sharded
- eltwise.unary.isposinf.isposinf
- eltwise.unary.isposinf.isposinf_sharded
- eltwise.binary.add.add_all_pytorch2
- eltwise.binary.add.add_set2_pytorch2
- eltwise.binary.add.add_different_memory_configs
Expand Down
142 changes: 142 additions & 0 deletions tests/sweep_framework/sweep_utils/sharding_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

import ttnn
import itertools
import random
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import _gen_reshape_args_from_volume


def gen_sharded_spec_unary(num_shapes, y, x, max_tensor_size=4 * 1024 * 1024):
# ["BLOCK", "WIDTH", "HEIGHT", "tensor_wh"]
sharding_strategy_list = ["BLOCK", "WIDTH", "HEIGHT", "tensor_wh"]
shard_orientation_list = ["COL_MAJOR", "ROW_MAJOR"]
spec_list = []

for sharding_strategy, shard_orientation, rank, layout in itertools.product(
sharding_strategy_list, shard_orientation_list, [4, 3, 2], ["TILE_LAYOUT", "ROW_MAJOR_LAYOUT"]
):
if sharding_strategy == "tensor_wh":
tensor_hw_as_shard_shape = True
sharding_strategy = "BLOCK"
else:
tensor_hw_as_shard_shape = False

for _ in range(num_shapes):
if tensor_hw_as_shard_shape:
# Gets stuck:
# X 8 Y 8 input_shape [1, 17792, 8] DataType.BFLOAT8_B Layout.TILE ShardStrategy.BLOCK ShardOrientation.COL_MAJOR tensor_hw_as_shard_shape True

if layout == "TILE_LAYOUT":
# In shard mode ShardMode::PHYSICAL, physical shard shape {12, 13312} is not compatible with alignment Alignment([32, 32])!
min_shard_size_x = 32
min_shard_size_y = 32
else: # if layout == "ROW_MAJOR_LAYOUT":
# Shard Size must be multiple of input_tile_size (width * height is multiple of 1024)
min_shard_size_x = random.choice([1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024])
min_shard_size_y = 1024 // min_shard_size_x

rest_volume = random.randint(1, max_tensor_size // (min_shard_size_x * min_shard_size_y * x * y))
input_shape = random.choice(_gen_reshape_args_from_volume(rest_volume, step=1, out_dims=rank))
input_shape = list(input_shape["reshape_dims"])
input_shape[-2] = input_shape[-2] * min_shard_size_x
input_shape[-1] = input_shape[-1] * min_shard_size_y

# Shard width should be multiple of 16 to satisfy L1 alignment (width = multiple 8 for bfloat16)
while input_shape[-1] % 16 != 0:
input_shape[-1] *= 2
input_shape[-2] //= 2

if shard_orientation == "COL_MAJOR":
tmp = input_shape[-2]
input_shape[-2] = input_shape[-1]
input_shape[-1] = tmp

elif sharding_strategy == "BLOCK":
min_shard_size_y = 32 * y
min_shard_size_x = 32 * x

input_shape = random.choice(
_gen_reshape_args_from_volume(
max_tensor_size // (min_shard_size_x * min_shard_size_y), step=1, out_dims=rank
)
)
input_shape = list(input_shape["reshape_dims"])
input_shape[-1] *= min_shard_size_y
input_shape[-2] *= min_shard_size_x

elif sharding_strategy == "WIDTH" or sharding_strategy == "HEIGHT":
# if shard_width % total_cores != 0: raise RuntimeError("Invalid sharding core_grid")
# Shard Size must be multiple of input_tile_size

if layout == "TILE_LAYOUT":
# In shard mode ShardMode::PHYSICAL, physical shard shape {12, 13312} is not compatible with alignment Alignment([32, 32])!
min_shard_size_x = 32
min_shard_size_y = 32 * x * y
else: # if layout == "ROW_MAJOR_LAYOUT":
# Shard Size must be multiple of input_tile_size
# Shard width should be multiple of 16 to satisfy L1 alignment
mul_32_y = random.choice([16, 32, 64, 128, 256, 512, 1024])
mul_32_x = 1024 // mul_32_y

if sharding_strategy == "HEIGHT":
# Shard width should be multiple of 16 to satisfy L1 alignment
while mul_32_x % 16 != 0:
mul_32_x *= 2
mul_32_y //= 2

min_shard_size_x = mul_32_x
min_shard_size_y = mul_32_y * x * y

rest_volume = random.randint(1, max_tensor_size // (min_shard_size_x * min_shard_size_y))
input_shape = random.choice(_gen_reshape_args_from_volume(rest_volume, step=1, out_dims=rank))
input_shape = list(input_shape["reshape_dims"])
input_shape[-2] = input_shape[-2] * min_shard_size_x
input_shape[-1] = input_shape[-1] * min_shard_size_y

if sharding_strategy == "HEIGHT":
tmp = input_shape[-2]
input_shape[-2] = input_shape[-1]
input_shape[-1] = tmp

# print(input_shape)

spec_list.append(
{
"input_shape": input_shape,
"sharding_strategy": sharding_strategy,
"shard_orientation": shard_orientation,
"tensor_hw_as_shard_shape": tensor_hw_as_shard_shape,
"input_layout": layout,
}
)

return spec_list


def parse_sharding_spec(input_spec):
input_shape = input_spec["input_shape"]
sharding_strategy = input_spec["sharding_strategy"]
shard_orientation = input_spec["shard_orientation"]
tensor_hw_as_shard_shape = input_spec["tensor_hw_as_shard_shape"]
input_layout = input_spec["input_layout"]

if sharding_strategy == "HEIGHT":
sharding_strategy = ttnn.ShardStrategy.HEIGHT
elif sharding_strategy == "WIDTH":
sharding_strategy = ttnn.ShardStrategy.WIDTH
else: # sharding_strategy == "BLOCK":
sharding_strategy = ttnn.ShardStrategy.BLOCK

if shard_orientation == "COL_MAJOR":
shard_orientation = ttnn.ShardOrientation.COL_MAJOR
else:
shard_orientation = ttnn.ShardOrientation.ROW_MAJOR

if input_layout == "TILE_LAYOUT":
input_layout = ttnn.TILE_LAYOUT
else:
input_layout = ttnn.ROW_MAJOR_LAYOUT

return input_shape, sharding_strategy, shard_orientation, tensor_hw_as_shard_shape, input_layout
12 changes: 12 additions & 0 deletions tests/sweep_framework/sweep_utils/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
# SPDX-License-Identifier: Apache-2.0


import os
import random
from loguru import logger
from itertools import product
Expand All @@ -18,6 +19,17 @@
from models.utility_functions import torch_random


def get_device_grid_size():
device_name = os.environ.get("ARCH_NAME", os.environ.get("TT_ARCH_NAME", "default")).lower()
assert device_name in ["wormhole_b0", "grayskull"]
if device_name == "grayskull":
y, x = 9, 12
else:
y, x = 8, 8

return y, x


def sanitize_shape_rm(input_shape):
if input_shape[-1] % 2 != 0:
input_shape[-1] = input_shape[-1] + 1
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import json
import torch
import random
import ttnn
import math
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm, get_device_grid_size
from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 120
Y, X = get_device_grid_size()

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_spec": gen_sharded_spec_unary(16, Y, X),
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
},
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
input_shape, sharding_strategy, _, _, input_layout = test_vector["input_spec"].values()
pre_sharded_height = math.prod(input_shape[:-1])
pre_sharded_width = input_shape[-1]

if input_layout == "ROW_MAJOR_LAYOUT" and test_vector["input_a_dtype"] == ttnn.bfloat8_b:
return True, "bfloat8_b is only supported on tiled layout"

return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_spec,
input_a_dtype,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

input_shape, sharding_strategy, shard_orientation, tensor_hw_as_shard_shape, input_layout = parse_sharding_spec(
input_spec
)

# print(
# f"X {X} Y {Y} input_shape {input_shape} {input_a_dtype} {input_layout} {sharding_strategy} {shard_orientation} tensor_hw_as_shard_shape {tensor_hw_as_shard_shape}"
# )

if input_layout == ttnn.ROW_MAJOR_LAYOUT:
input_shape = sanitize_shape_rm(input_shape)

torch_input_tensor_a = gen_rand_inf(input_shape, low=-100, high=100)
torch_output_tensor = torch.isfinite(torch_input_tensor_a)

sharded_config = ttnn.create_sharded_memory_config(
shape=input_shape,
core_grid=ttnn.CoreGrid(y=Y, x=X),
strategy=sharding_strategy,
orientation=shard_orientation,
use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape,
)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_layout,
device=device,
memory_config=sharded_config,
)

start_time = start_measuring_time()
output_tensor = ttnn.isfinite(input_tensor_a, memory_config=sharded_config)
e2e_perf = stop_measuring_time(start_time)
output_tensor = ttnn.to_torch(output_tensor)

pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999)
# print(pcc)
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]
Loading
Loading