Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

#13332: add ttnn implementation for Bert-Tiny model #13471

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions models/demos/bert_tiny/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
## Bert-Tiny Demo

## Introduction
BERT stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.

# Platforms:
E150, WH N300, N150

## How to Run

Use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo[models/demos/bert_tiny/demo/input_data.json-mrm8488/bert-tiny-finetuned-squadv2-128-8-device_params0]` to run the demo.


If you wish to run the demo with a different input use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo[<address_to_your_json_file.json>-mrm8488/bert-tiny-finetuned-squadv2-128-8-device_params0]`. This file is expected to have exactly 8 inputs.


Our second demo is designed to run SQuADV2 dataset, run this with `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo_squadv2[1-mrm8488/bert-tiny-finetuned-squadv2-384-8-device_params0]`.

If you wish to run for `n_iterations` samples, use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo_squadv2[<n_iterations>-mrm8488/bert-tiny-finetuned-squadv2-384-8-device_params0]`


# Inputs
Inputs by default are provided from `input_data.json`. If you wish you to change the inputs, provide a different path to test_demo.

We do not recommend modifying `input_data.json` file.

# Details
The entry point to bert model is bert_for_question_answering in `models/demos/bert_tiny/tt/bert_tiny.py`. The model picks up certain configs and weights from huggingface pretrained model. We have used `mrm8488/bert-tiny-finetuned-squadv2` version from huggingface as our reference.
305 changes: 305 additions & 0 deletions models/demos/bert_tiny/demo/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

import json
import pytest
import torch
from loguru import logger

import ttnn
from models.utility_functions import (
disable_compilation_reports,
disable_persistent_kernel_cache,
profiler,
)
from models.experimental.functional_common.attention_mask_functions import get_extended_attention_mask

from models.datasets.dataset_squadv2 import squadv2_1K_samples_input, squadv2_answer_decode_batch
from ttnn.model_preprocessing import (
preprocess_model_parameters,
)

from ttnn.model_preprocessing import *
from transformers import BertForQuestionAnswering, BertTokenizer, pipeline
from models.demos.bert_tiny.tt.bert_tiny import bert_for_question_answering, preprocess_inputs
import evaluate


def load_inputs(input_path, batch):
with open(input_path) as f:
input_data = json.load(f)
assert len(input_data) >= batch, f"Input data needs to have at least {batch} (batch size) entries."

context = []
question = []
for i in range(batch):
context.append(input_data[i]["context"])
question.append(input_data[i]["question"])

return context, question


def positional_ids(config, input_ids, past_key_values_length=0):
seq_length = input_ids.size(1)
position_ids = torch.arange(config.max_position_embeddings, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0)[:, past_key_values_length : seq_length + past_key_values_length]
position_ids = position_ids.expand_as(input_ids)

return position_ids


def run_bert_question_and_answering_inference(
device,
use_program_cache,
model_name,
batch_size,
sequence_size,
model_location_generator,
input_path,
):
disable_persistent_kernel_cache()
model = str(model_location_generator(model_name, model_subdir="Bert"))
hugging_face_reference_model = BertForQuestionAnswering.from_pretrained(model, torchscript=False)
pytorch_model = hugging_face_reference_model.eval()

tokenizer_name = str(model_location_generator(model_name, model_subdir="Bert"))
tokenizer = BertTokenizer.from_pretrained(tokenizer_name)
config = hugging_face_reference_model.config
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer)

profiler.start(f"preprocessing_parameter")
parameters = preprocess_model_parameters(
initialize_model=lambda: pytorch_model,
device=device,
convert_to_ttnn=lambda *_: True,
)
profiler.end(f"preprocessing_parameter")

context, question = load_inputs(input_path, batch_size)

preprocess_params, _, postprocess_params = nlp._sanitize_parameters()
preprocess_params["max_seq_len"] = sequence_size
inputs = nlp._args_parser({"context": context, "question": question})
preprocessed_inputs = []
for i in range(batch_size):
model_input = next(nlp.preprocess(inputs[0][i], **preprocess_params))
single_input = {
"example": model_input["example"],
"inputs": model_input,
}
preprocessed_inputs.append(single_input)

bert_input = tokenizer.batch_encode_plus(
zip(question, context),
max_length=sequence_size,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_token_type_ids=True,
return_tensors="pt",
)

position_ids = positional_ids(config, bert_input.input_ids)
profiler.start(f"preprocessing_input")
ttnn_bert_inputs = preprocess_inputs(
bert_input["input_ids"],
bert_input["token_type_ids"],
position_ids,
bert_input["attention_mask"],
device=device,
)
profiler.end(f"preprocessing_input")

profiler.start(f"inference_time")
ttnn_output = bert_for_question_answering(
config,
*ttnn_bert_inputs,
parameters=parameters,
device=device,
)
profiler.end(f"inference_time")

ttnn_output = (
ttnn.to_torch(ttnn.from_device(ttnn_output)).reshape(batch_size, 1, sequence_size, -1).to(torch.float32)
)

ttnn_start_logits = ttnn_output[..., :, 0].squeeze(1)
ttnn_end_logits = ttnn_output[..., :, 1].squeeze(1)

model_answers = {}
profiler.start("post_processing_output_to_string")
for i in range(batch_size):
tt_res = {
"start": ttnn_start_logits[i],
"end": ttnn_end_logits[i],
"example": preprocessed_inputs[i]["example"],
**preprocessed_inputs[i]["inputs"],
}

tt_answer = nlp.postprocess([tt_res], **postprocess_params)

logger.info(f"answer: {tt_answer['answer']}\n")
model_answers[i] = tt_answer["answer"]
uaydonat marked this conversation as resolved.
Show resolved Hide resolved

profiler.end("post_processing_output_to_string")

measurements = {
"preprocessing_parameter": profiler.get("preprocessing_parameter"),
"preprocessing_input": profiler.get("preprocessing_input"),
"inference_time": profiler.get("inference_time"),
"post_processing": profiler.get("post_processing_output_to_string"),
}
logger.info(f"preprocessing_parameter: {measurements['preprocessing_parameter']} s")
logger.info(f"preprocessing_input: {measurements['preprocessing_input']} s")
logger.info(f"inference_time: {measurements['inference_time']} s")
logger.info(f"post_processing : {measurements['post_processing']} s")

return measurements


def run_bert_question_and_answering_inference_squad_v2(
device,
use_program_cache,
model_name,
batch_size,
sequence_size,
model_location_generator,
n_iterations,
):
disable_persistent_kernel_cache()

model = str(model_location_generator(model_name, model_subdir="Bert"))
hugging_face_reference_model = BertForQuestionAnswering.from_pretrained(model, torchscript=False)
pytorch_model = hugging_face_reference_model.eval()

# set up tokenizer
tokenizer_name = str(model_location_generator(model_name, model_subdir="Bert"))
tokenizer = BertTokenizer.from_pretrained(tokenizer_name)
config = hugging_face_reference_model.config

parameters = preprocess_model_parameters(
initialize_model=lambda: pytorch_model,
device=device,
convert_to_ttnn=lambda *_: True,
)
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer)

attention_mask = True
token_type_ids = True
inputs_squadv2 = squadv2_1K_samples_input(tokenizer, sequence_size, attention_mask, token_type_ids, batch_size)
squad_metric = evaluate.load("squad_v2")

with torch.no_grad():
pred_labels = []
cpu_pred_labels = []
true_labels = []
i = 0
for batch in inputs_squadv2:
if i < n_iterations:
batch_data = batch[0]
curr_batch_size = batch_data["input_ids"].shape[0]
position_ids = positional_ids(config, batch_data.input_ids)
ttnn_bert_inputs = preprocess_inputs(
batch_data["input_ids"],
batch_data["token_type_ids"],
position_ids,
batch_data["attention_mask"],
device=device,
)
tt_output = bert_for_question_answering(
config,
*ttnn_bert_inputs,
parameters=parameters,
device=device,
)
tt_output = (
ttnn.to_torch(ttnn.from_device(tt_output))
.reshape(batch_size, 1, sequence_size, -1)
.to(torch.float32)
)
cpu_output = hugging_face_reference_model(**batch_data)
references = batch[1]
question = batch[2]
context = batch[3]

cpu_predictions, tt_predictions = squadv2_answer_decode_batch(
hugging_face_reference_model,
tokenizer,
nlp,
references,
cpu_output,
tt_output,
curr_batch_size,
question,
context,
)
pred_labels.extend(tt_predictions)
cpu_pred_labels.extend(cpu_predictions)
true_labels.extend(references)

del tt_output
i += 1
eval_score = squad_metric.compute(predictions=pred_labels, references=true_labels)
cpu_eval_score = squad_metric.compute(predictions=cpu_pred_labels, references=true_labels)
logger.info(f"\tTT_Eval: exact: {eval_score['exact']} -- F1: {eval_score['f1']}")
logger.info(f"\tCPU_Eval: exact: {cpu_eval_score['exact']} -- F1: {cpu_eval_score['f1']}")


@pytest.mark.parametrize("device_params", [{"l1_small_size": 24576}], indirect=True)
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("sequence_size", [128])
@pytest.mark.parametrize("model_name", ["mrm8488/bert-tiny-finetuned-squadv2"])
@pytest.mark.parametrize("input_loc", ["models/demos/bert_tiny/demo/input_data.json"])
def test_demo(
input_loc,
batch_size,
sequence_size,
model_name,
model_location_generator,
device,
use_program_cache,
):
disable_persistent_kernel_cache()
disable_compilation_reports()

return run_bert_question_and_answering_inference(
device=device,
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=batch_size,
sequence_size=sequence_size,
model_location_generator=model_location_generator,
input_path=input_loc,
)


@pytest.mark.parametrize("device_params", [{"l1_small_size": 24576}], indirect=True)
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("sequence_size", [384])
@pytest.mark.parametrize("model_name", ["mrm8488/bert-tiny-finetuned-squadv2"])
@pytest.mark.parametrize(
"n_iterations",
((1),),
)
def test_demo_squadv2(
model_name,
batch_size,
sequence_size,
n_iterations,
model_location_generator,
device,
use_program_cache,
):
disable_persistent_kernel_cache()
disable_compilation_reports()

return run_bert_question_and_answering_inference_squad_v2(
device=device,
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=batch_size,
sequence_size=sequence_size,
model_location_generator=model_location_generator,
n_iterations=n_iterations,
)
Loading
Loading