Skip to content

Commit

Permalink
#14732: add bert-tiny test_performance using trace and 2cq-WIP
Browse files Browse the repository at this point in the history
  • Loading branch information
vigneshkeerthivasanx committed Nov 25, 2024
1 parent 9b97155 commit b6d3abb
Show file tree
Hide file tree
Showing 9 changed files with 1,575 additions and 0 deletions.
28 changes: 28 additions & 0 deletions models/demos/bert_tiny/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
## Bert-Tiny Demo

## Introduction
BERT stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.

# Platforms:
E150, WH N300, N150

## How to Run

Use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo[models/demos/bert_tiny/demo/input_data.json-mrm8488/bert-tiny-finetuned-squadv2-128-8-device_params0]` to run the demo.


If you wish to run the demo with a different input use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo[<address_to_your_json_file.json>-mrm8488/bert-tiny-finetuned-squadv2-128-8-device_params0]`. This file is expected to have exactly 8 inputs.


Our second demo is designed to run SQuADV2 dataset, run this with `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo_squadv2[1-mrm8488/bert-tiny-finetuned-squadv2-384-8-device_params0]`.

If you wish to run for `n_iterations` samples, use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo_squadv2[<n_iterations>-mrm8488/bert-tiny-finetuned-squadv2-384-8-device_params0]`


# Inputs
Inputs by default are provided from `input_data.json`. If you wish you to change the inputs, provide a different path to test_demo.

We do not recommend modifying `input_data.json` file.

# Details
The entry point to bert model is bert_for_question_answering in `models/demos/bert_tiny/tt/bert_tiny.py`. The model picks up certain configs and weights from huggingface pretrained model. We have used `mrm8488/bert-tiny-finetuned-squadv2` version from huggingface as our reference.
305 changes: 305 additions & 0 deletions models/demos/bert_tiny/demo/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

import json
import pytest
import torch
from loguru import logger

import ttnn
from models.utility_functions import (
disable_compilation_reports,
disable_persistent_kernel_cache,
profiler,
)
from models.experimental.functional_common.attention_mask_functions import get_extended_attention_mask

from models.datasets.dataset_squadv2 import squadv2_1K_samples_input, squadv2_answer_decode_batch
from ttnn.model_preprocessing import (
preprocess_model_parameters,
)

from ttnn.model_preprocessing import *
from transformers import BertForQuestionAnswering, BertTokenizer, pipeline
from models.demos.bert_tiny.tt.bert_tiny import bert_for_question_answering, preprocess_inputs
import evaluate


def load_inputs(input_path, batch):
with open(input_path) as f:
input_data = json.load(f)
assert len(input_data) >= batch, f"Input data needs to have at least {batch} (batch size) entries."

context = []
question = []
for i in range(batch):
context.append(input_data[i]["context"])
question.append(input_data[i]["question"])

return context, question


def positional_ids(config, input_ids, past_key_values_length=0):
seq_length = input_ids.size(1)
position_ids = torch.arange(config.max_position_embeddings, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0)[:, past_key_values_length : seq_length + past_key_values_length]
position_ids = position_ids.expand_as(input_ids)

return position_ids


def run_bert_question_and_answering_inference(
device,
use_program_cache,
model_name,
batch_size,
sequence_size,
model_location_generator,
input_path,
):
disable_persistent_kernel_cache()
model = str(model_location_generator(model_name, model_subdir="Bert"))
hugging_face_reference_model = BertForQuestionAnswering.from_pretrained(model, torchscript=False)
pytorch_model = hugging_face_reference_model.eval()

tokenizer_name = str(model_location_generator(model_name, model_subdir="Bert"))
tokenizer = BertTokenizer.from_pretrained(tokenizer_name)
config = hugging_face_reference_model.config
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer)

profiler.start(f"preprocessing_parameter")
parameters = preprocess_model_parameters(
initialize_model=lambda: pytorch_model,
device=device,
convert_to_ttnn=lambda *_: True,
)
profiler.end(f"preprocessing_parameter")

context, question = load_inputs(input_path, batch_size)

preprocess_params, _, postprocess_params = nlp._sanitize_parameters()
preprocess_params["max_seq_len"] = sequence_size
inputs = nlp._args_parser({"context": context, "question": question})
preprocessed_inputs = []
for i in range(batch_size):
model_input = next(nlp.preprocess(inputs[0][i], **preprocess_params))
single_input = {
"example": model_input["example"],
"inputs": model_input,
}
preprocessed_inputs.append(single_input)

bert_input = tokenizer.batch_encode_plus(
zip(question, context),
max_length=sequence_size,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_token_type_ids=True,
return_tensors="pt",
)

position_ids = positional_ids(config, bert_input.input_ids)
profiler.start(f"preprocessing_input")
ttnn_bert_inputs = preprocess_inputs(
bert_input["input_ids"],
bert_input["token_type_ids"],
position_ids,
bert_input["attention_mask"],
device=device,
)
profiler.end(f"preprocessing_input")

profiler.start(f"inference_time")
ttnn_output = bert_for_question_answering(
config,
*ttnn_bert_inputs,
parameters=parameters,
device=device,
)
profiler.end(f"inference_time")

ttnn_output = (
ttnn.to_torch(ttnn.from_device(ttnn_output)).reshape(batch_size, 1, sequence_size, -1).to(torch.float32)
)

ttnn_start_logits = ttnn_output[..., :, 0].squeeze(1)
ttnn_end_logits = ttnn_output[..., :, 1].squeeze(1)

model_answers = {}
profiler.start("post_processing_output_to_string")
for i in range(batch_size):
tt_res = {
"start": ttnn_start_logits[i],
"end": ttnn_end_logits[i],
"example": preprocessed_inputs[i]["example"],
**preprocessed_inputs[i]["inputs"],
}

tt_answer = nlp.postprocess([tt_res], **postprocess_params)

logger.info(f"answer: {tt_answer['answer']}\n")
model_answers[i] = tt_answer["answer"]

profiler.end("post_processing_output_to_string")

measurements = {
"preprocessing_parameter": profiler.get("preprocessing_parameter"),
"preprocessing_input": profiler.get("preprocessing_input"),
"inference_time": profiler.get("inference_time"),
"post_processing": profiler.get("post_processing_output_to_string"),
}
logger.info(f"preprocessing_parameter: {measurements['preprocessing_parameter']} s")
logger.info(f"preprocessing_input: {measurements['preprocessing_input']} s")
logger.info(f"inference_time: {measurements['inference_time']} s")
logger.info(f"post_processing : {measurements['post_processing']} s")

return measurements


def run_bert_question_and_answering_inference_squad_v2(
device,
use_program_cache,
model_name,
batch_size,
sequence_size,
model_location_generator,
n_iterations,
):
disable_persistent_kernel_cache()

model = str(model_location_generator(model_name, model_subdir="Bert"))
hugging_face_reference_model = BertForQuestionAnswering.from_pretrained(model, torchscript=False)
pytorch_model = hugging_face_reference_model.eval()

# set up tokenizer
tokenizer_name = str(model_location_generator(model_name, model_subdir="Bert"))
tokenizer = BertTokenizer.from_pretrained(tokenizer_name)
config = hugging_face_reference_model.config

parameters = preprocess_model_parameters(
initialize_model=lambda: pytorch_model,
device=device,
convert_to_ttnn=lambda *_: True,
)
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer)

attention_mask = True
token_type_ids = True
inputs_squadv2 = squadv2_1K_samples_input(tokenizer, sequence_size, attention_mask, token_type_ids, batch_size)
squad_metric = evaluate.load("squad_v2")

with torch.no_grad():
pred_labels = []
cpu_pred_labels = []
true_labels = []
i = 0
for batch in inputs_squadv2:
if i < n_iterations:
batch_data = batch[0]
curr_batch_size = batch_data["input_ids"].shape[0]
position_ids = positional_ids(config, batch_data.input_ids)
ttnn_bert_inputs = preprocess_inputs(
batch_data["input_ids"],
batch_data["token_type_ids"],
position_ids,
batch_data["attention_mask"],
device=device,
)
tt_output = bert_for_question_answering(
config,
*ttnn_bert_inputs,
parameters=parameters,
device=device,
)
tt_output = (
ttnn.to_torch(ttnn.from_device(tt_output))
.reshape(batch_size, 1, sequence_size, -1)
.to(torch.float32)
)
cpu_output = hugging_face_reference_model(**batch_data)
references = batch[1]
question = batch[2]
context = batch[3]

cpu_predictions, tt_predictions = squadv2_answer_decode_batch(
hugging_face_reference_model,
tokenizer,
nlp,
references,
cpu_output,
tt_output,
curr_batch_size,
question,
context,
)
pred_labels.extend(tt_predictions)
cpu_pred_labels.extend(cpu_predictions)
true_labels.extend(references)

del tt_output
i += 1
eval_score = squad_metric.compute(predictions=pred_labels, references=true_labels)
cpu_eval_score = squad_metric.compute(predictions=cpu_pred_labels, references=true_labels)
logger.info(f"\tTT_Eval: exact: {eval_score['exact']} -- F1: {eval_score['f1']}")
logger.info(f"\tCPU_Eval: exact: {cpu_eval_score['exact']} -- F1: {cpu_eval_score['f1']}")


@pytest.mark.parametrize("device_params", [{"l1_small_size": 24576}], indirect=True)
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("sequence_size", [128])
@pytest.mark.parametrize("model_name", ["mrm8488/bert-tiny-finetuned-squadv2"])
@pytest.mark.parametrize("input_loc", ["models/demos/bert_tiny/demo/input_data.json"])
def test_demo(
input_loc,
batch_size,
sequence_size,
model_name,
model_location_generator,
device,
use_program_cache,
):
disable_persistent_kernel_cache()
disable_compilation_reports()

return run_bert_question_and_answering_inference(
device=device,
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=batch_size,
sequence_size=sequence_size,
model_location_generator=model_location_generator,
input_path=input_loc,
)


@pytest.mark.parametrize("device_params", [{"l1_small_size": 24576}], indirect=True)
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("sequence_size", [384])
@pytest.mark.parametrize("model_name", ["mrm8488/bert-tiny-finetuned-squadv2"])
@pytest.mark.parametrize(
"n_iterations",
((1),),
)
def test_demo_squadv2(
model_name,
batch_size,
sequence_size,
n_iterations,
model_location_generator,
device,
use_program_cache,
):
disable_persistent_kernel_cache()
disable_compilation_reports()

return run_bert_question_and_answering_inference_squad_v2(
device=device,
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=batch_size,
sequence_size=sequence_size,
model_location_generator=model_location_generator,
n_iterations=n_iterations,
)
Loading

0 comments on commit b6d3abb

Please sign in to comment.