-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#6433: add the frist DownSample Block of YOLOv4
- Loading branch information
1 parent
8a1a682
commit adbf6fc
Showing
2 changed files
with
530 additions
and
0 deletions.
There are no files selected for viewing
194 changes: 194 additions & 0 deletions
194
models/experimental/functional_yolov4/tt/ttnn_yolov4.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import torch | ||
import ttnn | ||
|
||
import tt_lib as ttl | ||
import tt_lib.fallback_ops | ||
import tt_lib.profiler as profiler | ||
|
||
from loguru import logger | ||
|
||
|
||
def yolov4_reshard( | ||
ttnn_tensor, | ||
sharded_memory_config, | ||
use_reshard=True, | ||
interleaved_memory_config=ttnn.L1_MEMORY_CONFIG, | ||
dtype=None, | ||
): | ||
if use_reshard: | ||
return ttnn.to_memory_config( | ||
ttnn_tensor, | ||
memory_config=sharded_memory_config, | ||
) | ||
else: | ||
ttl_tensor = ttnn_tensor | ||
ttl_tensor = ttl.tensor.sharded_to_interleaved(ttl_tensor, interleaved_memory_config, dtype) | ||
ttl_tensor = ttl.tensor.interleaved_to_sharded( | ||
ttl_tensor, | ||
sharded_memory_config, | ||
dtype, | ||
) | ||
return ttl_tensor | ||
|
||
|
||
class Yolov4: | ||
def __init__( | ||
self, | ||
parameters, | ||
) -> None: | ||
self.c1 = parameters.c1 | ||
# self.c1_2 = parameters.c1_2 | ||
# self.p1 = parameters.p1 | ||
self.c2 = parameters.c2 | ||
# self.c2_2 = parameters.c2_2 | ||
# self.p2 = parameters.p2 | ||
self.c3 = parameters.c3 | ||
# self.c3_2 = parameters.c3_2 | ||
# self.p3 = parameters.p3 | ||
self.c4 = parameters.c4 | ||
# self.c4_2 = parameters.c4_2 | ||
# self.p4 = parameters.p4 | ||
# self.bnc = parameters.bnc | ||
# self.bnc_2 = parameters.bnc_2 | ||
self.c5 = parameters.c5 | ||
# self.c5_2 = parameters.c5_2 | ||
# self.c5_3 = parameters.c5_3 | ||
self.c6 = parameters.c6 | ||
# self.c6_2 = parameters.c6_2 | ||
# self.c6_3 = parameters.c6_3 | ||
self.c7 = parameters.c7 | ||
# self.c7_2 = parameters.c7_2 | ||
# self.c7_3 = parameters.c7_3 | ||
self.c8 = parameters.c8 | ||
|
||
# self.c8_2 = parameters.c8_2 | ||
# self.c8_3 = parameters.c8_3 | ||
# self.output_layer = parameters.output_layer | ||
|
||
def __call__(self, device, input_tensor): | ||
input_tensor = input_tensor.to(device, self.c1.conv.input_sharded_memory_config) | ||
# profiler.tracy_message("c1") | ||
output_tensor = self.c1(input_tensor) | ||
output_tensor = self.c2(output_tensor) | ||
output_tensor = self.c3(output_tensor) | ||
output_tensor_c3 = output_tensor | ||
output_tensor = self.c4(output_tensor) | ||
output_tensor_c4 = output_tensor | ||
output_tensor = self.c5(output_tensor) | ||
output_tensor = self.c6(output_tensor) | ||
# x6_r = x6_r + x4_r | ||
output_tensor = output_tensor + output_tensor_c4 | ||
output_tensor = self.c7(output_tensor) | ||
# x7_r = torch.cat([x7_r, x3_r], dim=1) | ||
|
||
output_tensor = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.L1_MEMORY_CONFIG) | ||
output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.TILE_LAYOUT) | ||
output_tensor = ttnn.concat([output_tensor, output_tensor_c3], dim=3) | ||
|
||
output_tensor = ttl.tensor.interleaved_to_sharded(output_tensor, self.c8.conv.input_sharded_memory_config) | ||
output_tensor = self.c8(output_tensor) | ||
|
||
# save_c1_2_out = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.DRAM_MEMORY_CONFIG) | ||
# output_tensor = self.p1(output_tensor) | ||
# | ||
# profiler.tracy_message("c2") | ||
# output_tensor = unet_reshard(output_tensor, self.c2.conv.input_sharded_memory_config, use_reshard=False) | ||
# output_tensor = self.c2(output_tensor) | ||
# output_tensor = self.c2_2(output_tensor) | ||
# save_c2_2_out = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.DRAM_MEMORY_CONFIG) | ||
# output_tensor = self.p2(output_tensor) | ||
# | ||
# profiler.tracy_message("c3") | ||
# output_tensor = unet_reshard(output_tensor, self.c3.conv.input_sharded_memory_config, use_reshard=False) | ||
# output_tensor = self.c3(output_tensor) | ||
# output_tensor = self.c3_2(output_tensor) | ||
# save_c3_2_out = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.DRAM_MEMORY_CONFIG) | ||
# output_tensor = self.p3(output_tensor) | ||
# | ||
# profiler.tracy_message("c4") | ||
# output_tensor = unet_reshard(output_tensor, self.c4.conv.input_sharded_memory_config, use_reshard=False) | ||
# output_tensor = self.c4(output_tensor) | ||
# output_tensor = self.c4_2(output_tensor) | ||
# save_c4_2_out = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.DRAM_MEMORY_CONFIG) | ||
# output_tensor = self.p4(output_tensor) | ||
# | ||
# profiler.tracy_message("bnc") | ||
# output_tensor = unet_reshard(output_tensor, self.bnc.conv.input_sharded_memory_config, use_reshard=False) | ||
# output_tensor = self.bnc(output_tensor) | ||
# output_tensor = self.bnc_2(output_tensor) | ||
# | ||
# ## upsample block | ||
# profiler.tracy_message("upsample1") | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.ROW_MAJOR_LAYOUT) | ||
# output_tensor = ttnn.reshape(output_tensor, (1, 132, 10, 64)) | ||
# output_tensor = ttnn.upsample(output_tensor, 2) | ||
# output_tensor = ttnn.reshape(output_tensor, (1, 1, 5280, 64)) | ||
# | ||
# profiler.tracy_message("concat1") | ||
# output_tensor = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.L1_MEMORY_CONFIG) | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.TILE_LAYOUT) | ||
# output_tensor = ttnn.concat([output_tensor, save_c4_2_out], dim=3) | ||
# | ||
# profiler.tracy_message("c5") | ||
# output_tensor = ttl.tensor.interleaved_to_sharded(output_tensor, self.c5.conv.input_sharded_memory_config) | ||
# output_tensor = self.c5(output_tensor) | ||
# output_tensor = self.c5_2(output_tensor) | ||
# output_tensor = self.c5_3(output_tensor) | ||
# | ||
# profiler.tracy_message("upsample2") | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.ROW_MAJOR_LAYOUT) | ||
# output_tensor = ttnn.reshape(output_tensor, (1, 264, 20, 32)) | ||
# output_tensor = ttnn.upsample(output_tensor, 2) | ||
# output_tensor = ttnn.reshape(output_tensor, (1, 1, 21120, 32)) | ||
# | ||
# profiler.tracy_message("concat2") | ||
# output_tensor = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.L1_MEMORY_CONFIG) | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.TILE_LAYOUT) | ||
# output_tensor = ttnn.concat([output_tensor, save_c3_2_out], dim=3) | ||
# | ||
# profiler.tracy_message("c6") | ||
# output_tensor = ttl.tensor.interleaved_to_sharded(output_tensor, self.c6.conv.input_sharded_memory_config) | ||
# output_tensor = self.c6(output_tensor) | ||
# output_tensor = self.c6_2(output_tensor) | ||
# output_tensor = self.c6_3(output_tensor) | ||
# | ||
# profiler.tracy_message("upsample3") | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.ROW_MAJOR_LAYOUT) | ||
# output_tensor = ttnn.reshape(output_tensor, (1, 528, 40, 32)) | ||
# output_tensor = ttnn.upsample(output_tensor, 2) | ||
# output_tensor = ttnn.reshape(output_tensor, (1, 1, 84480, 32)) | ||
# | ||
# profiler.tracy_message("concat3") | ||
# output_tensor = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.L1_MEMORY_CONFIG) | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.TILE_LAYOUT) | ||
# output_tensor = ttnn.concat([output_tensor, save_c2_2_out], dim=3) | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.TILE_LAYOUT) | ||
# | ||
# profiler.tracy_message("c7") | ||
# output_tensor = ttl.tensor.interleaved_to_sharded(output_tensor, self.c7.conv.input_sharded_memory_config) | ||
# output_tensor = self.c7(output_tensor) | ||
# output_tensor = self.c7_2(output_tensor) | ||
# output_tensor = self.c7_3(output_tensor) | ||
# | ||
# profiler.tracy_message("upsample4") | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.ROW_MAJOR_LAYOUT) | ||
# output_tensor = ttnn.reshape(output_tensor, (1, 1056, 80, 16)) | ||
# output_tensor = ttnn.upsample(output_tensor, 2) | ||
# output_tensor = ttnn.reshape(output_tensor, (1, 1, 160 * 1056 * 2, 16)) | ||
# | ||
# profiler.tracy_message("concat4") | ||
# output_tensor = ttl.tensor.sharded_to_interleaved(output_tensor, ttnn.L1_MEMORY_CONFIG) | ||
# output_tensor = ttnn.to_layout(output_tensor, layout=ttnn.TILE_LAYOUT) | ||
# output_tensor = ttnn.concat([output_tensor, save_c1_2_out], dim=3) | ||
# | ||
# profiler.tracy_message("c8") | ||
# output_tensor = ttl.tensor.interleaved_to_sharded(output_tensor, self.c8.conv.input_sharded_memory_config) | ||
# output_tensor = self.c8(output_tensor) | ||
# output_tensor = self.c8_2(output_tensor) | ||
# output_tensor = self.c8_3(output_tensor) | ||
# output_tensor = self.output_layer(output_tensor) | ||
return ttnn.from_device(output_tensor) |
Oops, something went wrong.