Skip to content

Commit

Permalink
#9208: Functional SqueezeBERT model Demo
Browse files Browse the repository at this point in the history
  • Loading branch information
kkeerthana0573 committed Nov 19, 2024
1 parent 59c4891 commit 28dcc46
Show file tree
Hide file tree
Showing 9 changed files with 1,452 additions and 0 deletions.
33 changes: 33 additions & 0 deletions models/demos/squeezebert/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# SqueezeBERT demo

Demo showcasing SqueezeBERT running on Grayskull - e150 and Wormhole - n150, n300 using ttnn.

## Introduction
SqueezeBERT is a bidirectional transformer similar to the BERT model. The key difference between the BERT architecture and the SqueezeBERT architecture is that SqueezeBERT uses grouped convolutions instead of fully-connected layers for the Q, K, V and FFN layers.


## Details
The entry point to functional_squeezebert model is squeezebert_for_question_answering in `models/demos/squeezebert/tt/ttnn_functional_squeezebert.py`. The model picks up certain configs and weights from huggingface pretrained model. We have used `squeezebert/squeezebert-uncased` version from huggingface as our reference.

### Sequence Size: 384
Sequence size determines the maximum length of input sequences processed by the model, optimizing performance and compatibility. It's recommended to set the sequence_size to 384

### Batch size: 8
Batch Size determines the number of input sequences processed simultaneously during training or inference, impacting computational efficiency and memory usage. It's recommended to set the batch_size to 8

## How to Run

Use `pytest --disable-warnings models/demos/squeezebert/demo/demo.py::test_demo[models.demos.squeezebert.tt.ttnn_functional_squeezebert-squeezebert/squeezebert-uncased-models/demos/squeezebert/demo/input_data.json-device_params0]` to run the demo.

If you wish to run the demo with a different input use `pytest --disable-warnings models/demos/squeezebert/demo/demo.py::test_demo[models.demos.squeezebert.tt.ttnn_functional_squeezebert-squeezebert/squeezebert-uncased-<path_to_input_file>-device_params0]`. This file is expected to have exactly 8 inputs.

Our second demo is designed to run SQuADV2 dataset, run this with `pytest --disable-warnings models/demos/squeezebert/demo/demo.py::test_demo_squadv2[3-models.demos.squeezebert.tt.ttnn_functional_squeezebert-squeezebert/squeezebert-uncased-device_params0]`.

If you wish to run for `n_iterations` samples, use `pytest --disable-warnings models/demos/squeezebert/demo/demo.py::test_demo_squadv2[<n_iterations>-models.demos.squeezebert.tt.ttnn_functional_squeezebert-squeezebert/squeezebert-uncased-device_params0]`


## Inputs
The demo receives inputs from respective `input_data.json` by default. To modify the inputs or specify a different path, adjust the input_path parameter in the command accordingly. It's recommended to avoid direct modifications to the input_data.json file.


### Owner: [kkeerthana0573](https://github.com/kkeerthana0573)
301 changes: 301 additions & 0 deletions models/demos/squeezebert/demo/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

import ttnn
import json
import torch
import pytest
import evaluate

from loguru import logger
from ttnn.model_preprocessing import *
from models.utility_functions import (
profiler,
skip_for_wormhole_b0,
disable_compilation_reports,
disable_persistent_kernel_cache,
)
from ttnn.model_preprocessing import preprocess_model_parameters
from models.demos.squeezebert.tt import ttnn_functional_squeezebert
from models.datasets.dataset_squadv2 import squadv2_1K_samples_input, squadv2_answer_decode_batch

from transformers import SqueezeBertForQuestionAnswering, pipeline, SqueezeBertTokenizer


def load_inputs(input_path, batch):
with open(input_path) as f:
input_data = json.load(f)
assert len(input_data) >= batch, f"Input data needs to have at least {batch} (batch size) entries."

context = []
question = []
for i in range(batch):
context.append(input_data[i]["context"])
question.append(input_data[i]["question"])

return context, question


def positional_ids(config, input_ids, past_key_values_length=0):
seq_length = input_ids.size(1)
position_ids = torch.arange(config.max_position_embeddings, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0)[:, past_key_values_length : seq_length + past_key_values_length]
position_ids = position_ids.expand_as(input_ids)

return position_ids


def run_squeezebert_question_and_answering_inference(
device,
use_program_cache,
model_name,
batch_size,
sequence_size,
squeezebert,
input_path,
):
disable_persistent_kernel_cache()

hugging_face_reference_model = SqueezeBertForQuestionAnswering.from_pretrained(model_name, torchscript=False)
hugging_face_reference_model.eval()
state_dict = hugging_face_reference_model.state_dict()

tokenizer = SqueezeBertTokenizer.from_pretrained(model_name)
config = hugging_face_reference_model.config
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer)

tt_model_name = f"ttnn_{model_name}"

def convert_to_ttnn(model, name):
return not isinstance(model, torch.nn.Conv1d)

profiler.start(f"preprocessing_parameter")
parameters = preprocess_model_parameters(
model_name=tt_model_name,
initialize_model=lambda: hugging_face_reference_model,
convert_to_ttnn=convert_to_ttnn,
custom_preprocessor=squeezebert.custom_preprocessor,
device=device,
)
profiler.end(f"preprocessing_parameter")

context, question = load_inputs(input_path, batch_size)

preprocess_params, _, postprocess_params = nlp._sanitize_parameters()
preprocess_params["max_seq_len"] = sequence_size
inputs = nlp._args_parser({"context": context, "question": question})

preprocessed_inputs = []
for i in range(batch_size):
model_input = next(nlp.preprocess(inputs[0][i], **preprocess_params))

single_input = {
"example": model_input["example"],
"inputs": model_input,
}
preprocessed_inputs.append(single_input)

squeezebert_input = tokenizer.batch_encode_plus(
zip(question, context),
max_length=sequence_size,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_token_type_ids=True,
return_tensors="pt",
)

profiler.start(f"preprocessing_input")
position_ids = positional_ids(config, squeezebert_input.input_ids)
ttnn_squeezebert_inputs = squeezebert.preprocess_inputs(
squeezebert_input["input_ids"],
squeezebert_input["token_type_ids"],
position_ids,
squeezebert_input["attention_mask"],
device=device,
)
profiler.end(f"preprocessing_input")

profiler.start(f"inference_time")
tt_output = squeezebert.squeezebert_for_question_answering(
config,
*ttnn_squeezebert_inputs,
state_dict=state_dict,
base_addr=f"transformer.",
parameters=parameters,
device=device,
reader_patterns_cache=None,
)
profiler.end(f"inference_time")

tt_output = ttnn.to_torch(ttnn.from_device(tt_output)).reshape(batch_size, 1, sequence_size, -1).to(torch.float32)

tt_start_logits = tt_output[..., :, 0].squeeze(1)
tt_end_logits = tt_output[..., :, 1].squeeze(1)

model_answers = {}
profiler.start("post_processing_output_to_string")
for i in range(batch_size):
tt_res = {
"start": tt_start_logits[i],
"end": tt_end_logits[i],
"example": preprocessed_inputs[i]["example"],
**preprocessed_inputs[i]["inputs"],
}
tt_answer = nlp.postprocess([tt_res], **postprocess_params)

logger.info(f"answer: {tt_answer['answer']}\n")
model_answers[i] = tt_answer["answer"]

profiler.end("post_processing_output_to_string")

measurements = {
"preprocessing_parameter": profiler.get("preprocessing_parameter"),
"preprocessing_input": profiler.get("preprocessing_input"),
"inference_time": profiler.get("inference_time"),
"post_processing": profiler.get("post_processing_output_to_string"),
}
logger.info(f"preprocessing_parameter: {measurements['preprocessing_parameter']} s")
logger.info(f"preprocessing_input: {measurements['preprocessing_input']} s")
logger.info(f"inference_time: {measurements['inference_time']} s")
logger.info(f"post_processing : {measurements['post_processing']} s")

return measurements


def run_squeezebert_question_and_answering_inference_squad_v2(
device,
use_program_cache,
model_name,
batch_size,
sequence_size,
squeezebert,
n_iterations,
):
disable_persistent_kernel_cache()

hugging_face_reference_model = SqueezeBertForQuestionAnswering.from_pretrained(model_name, torchscript=False)
hugging_face_reference_model.eval()
state_dict = hugging_face_reference_model.state_dict()

tokenizer = SqueezeBertTokenizer.from_pretrained(model_name)
config = hugging_face_reference_model.config
tt_model_name = ttnn_functional_squeezebert

parameters = preprocess_model_parameters(
model_name=tt_model_name,
initialize_model=lambda: hugging_face_reference_model,
custom_preprocessor=squeezebert.custom_preprocessor,
device=device,
)

nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer)

attention_mask = True
token_type_ids = True
inputs_squadv2 = squadv2_1K_samples_input(tokenizer, sequence_size, attention_mask, token_type_ids, batch_size)
squad_metric = evaluate.load("squad_v2")

with torch.no_grad():
pred_labels = []
cpu_pred_labels = []
true_labels = []
i = 0
for batch in inputs_squadv2:
if i < n_iterations:
batch_data = batch[0]
curr_batch_size = batch_data["input_ids"].shape[0]
position_ids = positional_ids(config, batch_data.input_ids)
ttnn_squeezebert_inputs = squeezebert.preprocess_inputs(
batch_data["input_ids"],
batch_data["token_type_ids"],
position_ids,
batch_data["attention_mask"],
device=device,
)

tt_output = squeezebert.squeezebert_for_question_answering(
config,
*ttnn_squeezebert_inputs,
state_dict=state_dict,
base_addr=f"transformer.",
parameters=parameters,
device=device,
reader_patterns_cache=None,
)
tt_output = (
ttnn.to_torch(ttnn.from_device(tt_output))
.reshape(batch_size, 1, sequence_size, -1)
.to(torch.float32)
)

cpu_output = hugging_face_reference_model(**batch_data)
references = batch[1]
question = batch[2]
context = batch[3]

cpu_predictions, tt_predictions = squadv2_answer_decode_batch(
hugging_face_reference_model,
tokenizer,
nlp,
references,
cpu_output,
tt_output,
curr_batch_size,
question,
context,
)
pred_labels.extend(tt_predictions)
cpu_pred_labels.extend(cpu_predictions)
true_labels.extend(references)

del tt_output
i += 1
eval_score = squad_metric.compute(predictions=pred_labels, references=true_labels)
cpu_eval_score = squad_metric.compute(predictions=cpu_pred_labels, references=true_labels)
logger.info(f"\tTT_Eval: exact: {eval_score['exact']} -- F1: {eval_score['f1']}")
# logger.info(f"\tCPU_Eval: exact: {cpu_eval_score['exact']} -- F1: {cpu_eval_score['f1']}")


@pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True)
@pytest.mark.parametrize(
"model_name, input_loc",
((["squeezebert/squeezebert-uncased", "models/demos/squeezebert/demo/input_data.json"]),),
)
@pytest.mark.parametrize("squeezebert", [ttnn_functional_squeezebert])
def test_demo(input_loc, model_name, squeezebert, device, use_program_cache, reset_seeds):
disable_persistent_kernel_cache()
disable_compilation_reports()

return run_squeezebert_question_and_answering_inference(
device=device,
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=8,
sequence_size=384,
squeezebert=squeezebert,
input_path=input_loc,
)


@pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True)
@pytest.mark.parametrize("model_name", ["squeezebert/squeezebert-uncased"])
@pytest.mark.parametrize("squeezebert", [ttnn_functional_squeezebert])
@pytest.mark.parametrize(
"n_iterations",
((3),),
)
def test_demo_squadv2(model_name, squeezebert, n_iterations, device, use_program_cache, reset_seeds):
disable_persistent_kernel_cache()
disable_compilation_reports()

return run_squeezebert_question_and_answering_inference_squad_v2(
device=device,
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=8,
sequence_size=384,
squeezebert=squeezebert,
n_iterations=n_iterations,
)
Loading

0 comments on commit 28dcc46

Please sign in to comment.