Skip to content

Commit

Permalink
Add docs to Wedge transition for reverse
Browse files Browse the repository at this point in the history
  • Loading branch information
knelli2 committed Nov 2, 2024
1 parent 4d6f679 commit 5a6c93e
Showing 1 changed file with 20 additions and 0 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,16 @@ namespace domain::CoordinateMaps::ShapeMapTransitionFunctions {
* \label{eq:distance}
* \end{equation}
*
* \note If \p reverse is true, then the functional form of the transition is
* actually
* \begin{equation}
* f(r, \theta, \phi) = 1 - \frac{D_{\text{out}}(r, \theta, \phi) -
* r}{D_{\text{out}}(r, \theta, \phi) - D_{\text{in}}(r, \theta, \phi)} =
* \frac{r - \frac{D_{\text{in}}(r, \theta, \phi)}
* {D_{\text{out}}(r, \theta, \phi) - D_{\text{in}}(r, \theta, \phi)}.
* \label{eq:transition_func_reverse}
* \end{equation}
*
* Here, $s$ is the sphericity of the surface which goes from 0 (flat) to 1
* (spherical), $R$ is the radius of the spherical surface, $\text{out}$ is the
* outer surface, and $\text{in}$ is the inner surface. If the sphericity is 1,
Expand Down Expand Up @@ -224,6 +234,14 @@ namespace domain::CoordinateMaps::ShapeMapTransitionFunctions {
* the radius, we can use $\tilde{\vec x}$ in Eq. $\ref{eq:x_0_vector}$ instead
* of $\vec x$.
*
* \parblock
*
* \note If \p reverse is true, then the value multiplying $\Sigma$ in the
* numerator is now $-|\vec x_0 - \vec P|$ and in the denomintor $\Sigma$ picks
* up a minus sign factor.
*
* \endparblock
*
* ## Gradient
*
* The cartesian gradient of the transition function is
Expand All @@ -237,6 +255,8 @@ namespace domain::CoordinateMaps::ShapeMapTransitionFunctions {
* \vec P| - |\vec x_0 - \vec P|\right)^2}.
* \end{equation}
*
* \note If \p reverse is true, the gradient picks up an overall factor of -1.0.
*
* Therefore, we need to compute the gradients of $\vec x_0$ and $\vec x_1$.
*
* ### Gradient of vector to inner surface
Expand Down

0 comments on commit 5a6c93e

Please sign in to comment.