A classifier for piRNA-mRNA pairing, based on an experimental data.
argparse
numpy
scikit-learn
matplotlib
#Show the manual page
python3 piTargetClassifier.py
***********************************************************************
* Welcome to use piTargetClassifier *
* Y. Sun, 2018-11 *
***********************************************************************
-h , --help Show manual
Demo mode (--Demo)
Demo mode uses the prepared files in ./demo.
No other inputs needed. This will take 1 min to run.
Align mode (--Align)
-v INT Verbosity, [1, 2, 3]
Perform de novo alignments:
-p, -pi FILE piRNA FASTA file
-c, -mc FILE Control mRNA FASTA file
-t, -mt FILE Target mRNA FASTA file
-w Weight/FILE Weight: 'match' or 'hy'
or an additional file
-o Prefix Prefix of output files
or Use ready-to-use aligned results:
--import Prefix Prefix of pre-aligned data
Learn mode (--Learn)
--TestFrac Test data set fraction
-l, --logi Use logistic regression
--CVNum INT (Optional) Cross Validation N
-r, --rf Use random forest classifier
--TNum INT (Optional) Tree Number N
--Depth INT (Optional) Tree Depth N
-s, --svm Use SVM classifier
--Cpen INT (Optional) SVM penalty C
-a, --all Use all above three methods
-m, --mode MODE (Optional) All/Best/AllBest modes.
Predict mode (--Predict)
--prealign pre-aligned pattern file
--preout Prefix of the output file
Demo or Align mode can be run separately.
Align+Learn, or Align+Learn+Predict modes can be run together.
For Align mode, please pick one sub-mode: de novo or import.
within each sub-mode, all arguments are required
For Learn mode, one or more modes can be used. Default none.
For Predict mode, the input contains only a single pattern column.
The output file is Predictfile.pre.txt
Default optional values: CVNum=5, TNum=100, Depth=8, Cpen=1, mode=All
TestFrac=0.05
***********************************************************************
#1, Run Demo mode:
python3 piTargetClassifier.py --Demo
#Demo mode uses pre-set parameters which are same as the following command:
python3 piTargetClassifier.py --Align -v 1 -p ./demo/demo.piRNA.fa -c ./demo/demo.Control.fa -t ./demo/demo.Target.fa -o DemoRun --TestFrac 0.33 -w ./demo/weight.hy.txt --Learn -a -m AllBest --Predict --prealign ./demo/demo.UnknownPatterns.txt --preout DemoPre
#2, Run a real dataset
python3 piTargetClassifier.py --Align -p Results_RealData/piRNA.fa -c Results_RealData/RNA.Control.fa -t Results_RealData/RNA.Up.fa -w demo/weight.hy.txt -o MyDataFinal --Learn -l -r -m AllBest
#3, Run a real dataset by importing pre-aligned results
python3 piTargetClassifier.py --Align --import MyDataFinal --Learn -r --TNum 100 --Depth 15