Skip to content

st-bender/pyeppaurora

Repository files navigation

PyEPPAurora

Atmospheric ionization from particle precipitation

builds docs package wheel pyversions codecov coveralls scrutinizer

doi

Bundles some of the parametrizations for middle and upper atmospheric ionization and recombination rates for precipitating auroral and radiation-belt electrons as well as protons. Includes also some recombination rate parametrizations to convert the ionization rates to electron densities in the upper atmosphere. See References for a list of included parametrizations.

⚠️ This package is in beta stage, that is, it works for the most part and the interface should not change (much) in future versions.

Documentation is available at https://pyeppaurora.readthedocs.io.

Install

Requirements

  • numpy - required
  • scipy - required for 2-D interpolation
  • h5netcdf - optional for the empirical models, install with eppaurora[models]
  • xarray - optional for the empirical models, install with eppaurora[models]
  • pytest - optional, for testing

eppaurora

An installable pip package called eppaurora is available from the main package repository, it can be installed with:

$ pip install eppaurora

The latest development version can be installed with pip directly from github (see https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support and https://pip.pypa.io/en/stable/reference/pip_install/#git):

$ pip install [-e] git+https://github.com/st-bender/pyeppaurora.git

The other option is to use a local clone:

$ git clone https://github.com/st-bender/pyeppaurora.git
$ cd pyeppaurora

and then using pip (optionally using -e, see https://pip.pypa.io/en/stable/reference/pip_install/#install-editable):

$ pip install [-e] .

or using setup.py:

$ python setup.py install

Optionally, test the correct function of the module with

$ py.test [-v]

or even including the doctests in this document:

$ py.test [-v] --doctest-glob='*.md'

Usage

The python module itself is named eppaurora and is imported as usual.

All functions should be numpy-compatible and work with scalars and appropriately shaped arrays.

Energetic particle input in the atmosphere

This module include various parametrizations that describe the energy dissipation of electrons and protons entering the middle and upper atmosphere (see References below). The functions are correspondingly named

  • rr1987() for the parametrization by Roble and Ridley, 1987,
  • fang2008() for the parametrization described in Fang et al., 2008,
  • fang2010() for the parametrization described in Fang et al., 2010, and
  • fang2013() for the proton parametrization by Fang et al., 2013

For example, they are called like this:

>>> import eppaurora as aur
>>> ediss = aur.rr1987(1., 1., 8e5, 5e-10)
>>> ediss
3.3693621076457477e-10
>>> import numpy as np
>>> energies = np.logspace(-1, 2, 4)
>>> fluxes = np.ones_like(energies)
>>> # ca. 100, 150, 200 km
>>> scale_heights = np.array([6e5, 27e5, 40e5])
>>> rhos = np.array([5e-10, 1.7e-12, 2.6e-13])
>>> # energy dissipation "profiles"
>>> # broadcast to the right shape
>>> ediss_prof = aur.fang2008(
... 	energies[None, :], fluxes[None, :],
... 	scale_heights[:, None], rhos[:, None]
... )
>>> ediss_prof
array([[1.37708081e-49, 3.04153876e-09, 4.44256875e-07, 2.52699970e-08],
       [1.60060833e-09, 8.63248169e-08, 3.64564419e-09, 1.62591310e-10],
       [5.19369952e-08, 2.34089350e-08, 5.17379303e-10, 3.19504690e-11]])

All functions need additional input for the background atmosphere, the scale height and the mass density as described in the listed publications. These can be obtained, for example, from the nrlmsise00 module https://github.com/st-bender/pynrlmsise00. Profiles can then be calculated by passing the respective scale height and density profiles in addition to the energy and flux.

fang1020() and fang2013() are for mono-energetic particles and to obtain a realistic description, the results should be integrated over the respective energy spectrum. For this there are spectra functions available for Gaussian, Maxwellian, and power-law distribution.

Recombination rates

Some atmospheric recombination rates $\alpha$ are available within eppaurora.recombination to convert the ionization rates $q$ to electron densities $n_e$ via $q = \alpha n_e^2$. The recombination rates are parametrized according to altitude, see References.

Conductivity and conductance

Estimators for the Hall and Pedersen conductivity and conductance are available via the eppaurora.conductivity module. It contains the approximate solution "Robinson formula" for the conductances, and the functions for the conductivities that need the electron density and a model for the magnetic field, see References.

For example the "Robinson" conductances for an average energy en_avg and flux flx can be obtained by calling SigmaH_robinson1987(<en_avg>, <flx>): and SigmaP_robinson1987(<en_avg>, <flx>):

>>> import eppaurora as aur
>>> aur.SigmaH_robinson1987(10.0, 1.0)
10.985365619753862
>>> aur.SigmaP_robinson1987(10.0, 1.0)
3.4482758620689653

Empirical electron flux and ionization rate models

The extra module [models] contains empirical models for the electron energy flux and mean energy as described in [13], and the empirical auroral ionization rate model as described in [12]. These models can be installed with

pip install eppaurora[models]

The model by Zhang and Paxton [13] can be used by importing eppaurora.models.zhangpaxton2008. The main model interface is called zp2008() and is also available in the eppaurora.models namespace. Providing the magnetic latitude, magnetic local time, and the Kp index, this returns the total electron energy flux and the electron mean energy:

>>> from eppaurora.models import zp2008
>>> zp2008(65, 3, 2.0)  # mlat, mlt, Kp
(1.7750166408085015, 3.417755823709314)

This package also provides the coefficients and evaluation function for the SSUSI-derived ionization rate model [12]. It is imported via eppaurora.models and the coefficients are available through ssusiq2023_coeffs().

The model itself can be evaluated with ssusiq2023() for a certain geomagnetic latitude (gmlat), magnetic local time (mlt), and altitude by providing the space-weather coefficients of Kp, PC, Ap, and the 81-day averaged F10.7 fluxes as inputs: ssusiq2023(<gmlat>, <mlt>, <altitude>, [<list of index values>]). Note that this returns the natural logarithm of the ionization rate, normalized to 1 cm⁻³ s⁻¹.

Instead of a list or numpy-array, an xarray.DataArray can be used for the indices which will promote the coordinates to the result, such as an extra time dimension.

>>> from eppaurora.models import ssusiq2023
>>> ssusiq2023(65.0, 3.0, 100.0, [4.0, 10.0, 100.0, 157.0])  # doctest: +SKIP
<xarray.DataArray 'log_q' (dim_0: 1)>
array([18.80679417])
Coordinates:
    altitude  float32 100.0
    latitude  float32 66.6
    mlt       float32 3.0
Dimensions without coordinates: dim_0
Attributes:
    long_name:  natural logarithm of ionization rate
    units:      log(cm-3 s-1)

Various options to use different coefficients or to interpolate to a finer grid exist, check the docstring of ssusiq2023(). The geomagnetic indices can be obtained, for example, from the spaceweather module https://github.com/st-bender/pyspaceweather.

Other

Basic class and method documentation is accessible via pydoc:

$ pydoc eppaurora
$ pydoc eppaurora.brems
$ pydoc eppaurora.conductivity
$ pydoc eppaurora.electrons
$ pydoc eppaurora.protons
$ pydoc eppaurora.recombination
$ pydoc eppaurora.models.ssusiq2023
$ pydoc eppaurora.models.zhangpaxton2008

References

Electron ionization

[1]: Roble and Ridley, Ann. Geophys., 5A(6), 369--382, 1987
[2]: Fang et al., J. Geophys. Res. Space Phys., 113, A09311, 2008, doi: 10.1029/2008JA013384
[3]: Fang et al., Geophys. Res. Lett., 37, L22106, 2010, doi: 10.1029/2010GL045406

Ionization by secondary electrons from bremsstrahlung

[4]: Berger et al., Journal of Atmospheric and Terrestrial Physics, Volume 36, Issue 4, 591--617, April 1974, doi: 10.1016/0021-9169(74)90085-3

Proton ionization

[5]: Fang et al., J. Geophys. Res. Space Phys., 118, 5369--5378, 2013, doi: 10.1002/jgra.50484

Recombination rates

[6]: Vickrey et al., J. Geophys. Res. Space Phys., 87, A7, 5184--5196, doi: 10.1029/ja087ia07p05184
[7]: Gledhill, Radio Sci., 21, 3, 399-408, doi: 10.1029/rs021i003p00399
[8]: https://ssusi.jhuapl.edu/data_algorithms

Conductivity and conductance

[9]: Brekke et al., J. Geophys. Res., 79(25), 3773--3790, Sept. 1974, doi: 10.1029/JA079i025p03773
[10]: Vickrey et al., J. Geophys. Res., 86(A1), 65--75, Jan. 1981, doi: 10.1029/JA086iA01p00065
[11]: Robinson et al., J. Geophys. Res. Space Phys., 92(A3), 2565--2569, Mar. 1987, doi: 10.1029/JA092iA03p02565

Empirical ionization rate models

[12]: Bender et al., submitted to J. Geophys. Res. Space Phys., 2023, preprint doi: 10.48550/arXiv.2312.11130
[13]: Zhang and Paxton, J. Atmos. Sol. Terr. Phys., 70(8--9), 1231--1242, June 2008, doi: 10.1016/j.jastp.2008.03.008

License

This python interface is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see local copy or online version.