Implementation is available in the link Github Link Report is here
- pip install -U numpy networkx tqdm torch pandas scikit-learn matplotlib
- Seed Based
- It includes iterative seed propagation technique by matching multi-hop neighborhood structure
- Seed Free
- It includes multi-hop density matching to extract confident seed and use the previous seed propagation algorithm.
- python seed_based_main.py -nw 32 -g1 seedbased/G1.edgelist -g2 seedbased/G2.edgelist -sm seedbased/seed_node_pairs.txt -out seedbased/seed_based_result.txt
-nw NUM_WORKERS, --num_workers Number of workers/processes.
-g1 G1_EDGELIST_FILE, --g1_edgelist_file, Path to g1 edgelist.
-g2 G2_EDGELIST_FILE, --g2_edgelist_file, Path to g2 edgelist.
-sm SEED_MAPPING_FILE, --seed_mapping_file, Path to g1->g2 seed nodes mapping.
-out OUTPUT_FILE, --output_file, Path to output file.
-mpi MAP_PER_ITR, --map_per_itr, Number of nodes to map on each global iteration
- python seed_free_main.py -nw 32 -g1 seedfree/G1.edgelist -g2 seedfree/G2.edgelist -out seedfree/seed_free_result.txt
-nw NUM_WORKERS, --num_workers, Number of workers/processes.
-g1 G1_EDGELIST_FILE, --g1_edgelist_file, Path to g1 edgelist.
-g2 G2_EDGELIST_FILE, --g2_edgelist_file, Path to g2 edgelist.
-sin SEED_INIT_NUM, --seed_init_num, Number of seed mappings to extract.
-out OUTPUT_FILE, --output_file, Path to output file.
-mpi MAP_PER_ITR, --map_per_itr, Number of nodes to map on each global iteration
chmod x+u jobs.sh
./jobs.sh