Buying new cosmetic products is difficult. It can even be scary for those who have sensitive skin and are prone to skin trouble. The information needed to alleviate this problem is on the back of each product, but it's tought to interpret those ingredient lists unless you have a background in chemistry.
Instead of buying and hoping for the best, we can use data science to help us predict which products may be good fits for us. In this Project, you are going to create a content-based recommendation system where the 'content' will be the chemical components of cosmetics. Specifically, you will process ingredient lists for 1472 cosmetics on Sephora via word embedding, then visualize ingredient similarity using a machine learning method called t-SNE and an interactive visualization library called Bokeh.