Visualizations for Convolutional Neural Networks (CNNs) in Pytorch
The corresponding article can be found here!
- Pytorch
- Torchvision
- Numpy
- Matplotlib
- Pillow
Note: In case you don't have a GPU, remove all instances of "cuda" and "cpu" from the notebook before running.
- Layer Outputs at all layers
- Filter outputs at a given layer
- Filter visualization at a given layer
- Image heatmap using Occlusion
- Image heatmap using Grad Cam
- Class specific saliency maps
- SmoothGrad
- Semantic segmentation using GrabCut
- Visualization of class models (Gradient Ascent)
- Regularization techniques for class models (L2, Clip, Blur, etc.)
- Guided Backprop
- Filter visualization (Gradient Ascent)
- Neural Texture Synthesis
- Deep Dream
- Neural Style Transfer
- cs231n
- cs231n Lecture 12
- Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
- Visualizing and Understanding Convolutional Networks Matthew D Zeiler, Rob Fergus
- SmoothGrad: removing noise by adding noise Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, Martin Wattenberg
- Texture Synthesis Using Convolutional Neural Networks Leon A. Gatys, Alexander S. Ecker, Matthias Bethge