Put the grount truth data under groundtruth
directory like below,
$ tree groundtruth
groundtruth
├── test_cn.json
└── test_en.json
$ tree runs
runs
├── IMTKU
│ ├── run0
│ │ ├── cn_nugget.json
│ │ ├── cn_quality.json
│ │ ├── en_nugget.json
│ │ └── en_quality.json
│ ├── run1
│ │ ├── cn_nugget.json
│ │ ├── cn_quality.json
│ │ └── en_nugget.json
│ └── run2
│ ├── cn_nugget.json
│ ├── cn_quality.json
│ └── en_nugget.json
├── NKUST
│ ├── run0
│ │ ├── nugget_cn.json
│ │ ├── nugget_en.json
│ │ ├── quality_cn.json
│ │ └── quality_en.json
│ └── run1
│ ├── nugget_cn.json
│ └── quality_cn.json
├── RSLNV
│ ├── run0
│ │ ├── cn_nugget_test_submission.json
│ │ ├── cn_quality_test_submission.json
│ │ ├── en_nugget_test_submission.json
│ │ └── en_quality_test_submission.json
│ ├── run1
│ │ └── en_nuggets_200_02_shi.json
│ └── run2
│ └── nugget_chinese_test_submission.json
├── SKYMN
│ ├── run0
│ │ └── quality_en.json
│ ├── run1
│ │ └── quality_en.json
│ └── run2
│ └── quality_en.json
├── TMUDS
│ ├── run0
│ │ └── cn_nugget.json
│ ├── run1
│ │ └── cn_nugget.json
│ └── run2
│ └── cn_nugget.json
├── TUA1
│ ├── run0
│ │ ├── cn_nugget.json
│ │ └── cn_quality.json
│ ├── run1
│ │ └── cn_quality.json
│ └── run2
│ └── cn_quality.json
└── WUST
└── run0
├── nugget_cn_submission.json
└── quality_cn_submission.json
25 directories, 34 files
$ bash prepare.sh
Run Name | Desc |
---|---|
run1 | uniform distribution |
run2 | popularity distribution |
$ tree runs/Baseline/
runs/Baseline/
├── run0
│ ├── nugget_cn.json
│ ├── nugget_en.json
│ ├── quality_cn.json
│ └── quality_en.json
├── run1
│ ├── nugget_cn.json
│ ├── nugget_en.json
│ ├── quality_cn.json
│ └── quality_en.json
└── run2
├── nugget_cn.json
├── nugget_en.json
├── quality_cn.json
└── quality_en.json
3 directories, 12 files
$ wget http://research.nii.ac.jp/ntcir/tools/Discpower160507.tar.gz
$ mkdir Discpower
$ tar xvfz ./Discpower160507.tar.gz -C ./Discpower
$ cd ./Discpower
$ make
$ sudo make install
$ sudo apt install gawk # if necessary
$ which gawk
/usr/bin/gawk
$ bash calc.sh
$ tree ./dialoguebyrun
./dialoguebyrun
├── nugget
│ ├── chinese
│ │ ├── jsd.test_data.csv
│ │ ├── jsd.test_data.dialoguebyrun
│ │ ├── rnss.test_data.csv
│ │ ├── rnss.test_data.dialoguebyrun
│ │ └── runs
│ └── english
│ ├── jsd.test_data.csv
│ ├── jsd.test_data.dialoguebyrun
│ ├── rnss.test_data.csv
│ ├── rnss.test_data.dialoguebyrun
│ └── runs
└── quality
├── chinese
│ ├── nmd-A.test_data.csv
│ ├── nmd-A.test_data.dialoguebyrun
│ ├── nmd-E.test_data.csv
│ ├── nmd-E.test_data.dialoguebyrun
│ ├── nmd-S.test_data.csv
│ ├── nmd-S.test_data.dialoguebyrun
│ ├── rsnod-A.test_data.csv
│ ├── rsnod-A.test_data.dialoguebyrun
│ ├── rsnod-E.test_data.csv
│ ├── rsnod-E.test_data.dialoguebyrun
│ ├── rsnod-S.test_data.csv
│ ├── rsnod-S.test_data.dialoguebyrun
│ └── runs
└── english
├── nmd-A.test_data.csv
├── nmd-A.test_data.dialoguebyrun
├── nmd-E.test_data.csv
├── nmd-E.test_data.dialoguebyrun
├── nmd-S.test_data.csv
├── nmd-S.test_data.dialoguebyrun
├── rsnod-A.test_data.csv
├── rsnod-A.test_data.dialoguebyrun
├── rsnod-E.test_data.csv
├── rsnod-E.test_data.dialoguebyrun
├── rsnod-S.test_data.csv
├── rsnod-S.test_data.dialoguebyrun
└── runs
$ mkdir logs
$ nohup bash compare.sh 10 1> logs/compare.10.out 2> logs/compare.10.err & # about 8 minutes
$ nohup bash compare.sh 1000 1> logs/compare.1000.out 2> logs/compare.1000.err &
$ nohup bash compare.sh 10000 1> logs/compare.10000.out 2> logs/compare.10000.err &
NOTE: Calculating time shown here (about 2days when B set to 1000)
To calculate confidence intervals with Kendall's tau
$ sudo apt install libgmp3-dev # for the gmp package which is one of dependencies of NSM3 package
$ R
> install.packages("NSM3", dependencies = TRUE)
$ python table.py
$ sed -i -e 's/Baseline-run0/BL-lstm/g' -e 's/Baseline-run1/BL-uniform/g' -e 's/Baseline-run2/BL-popularity/g' -e 's/\n$//' table/*.csv
Copy these csv files to the latex project
$ tree table
table
├── pvalues_chinesenuggetjsd.csv
├── pvalues_chinesenuggetrnss.csv
├── pvalues_chinesequalitynmdA.csv
├── pvalues_chinesequalitynmdE.csv
├── pvalues_chinesequalitynmdS.csv
├── pvalues_chinesequalityrsnodA.csv
├── pvalues_chinesequalityrsnodE.csv
├── pvalues_chinesequalityrsnodS.csv
├── pvalues_englishnuggetjsd.csv
├── pvalues_englishnuggetrnss.csv
├── pvalues_englishqualitynmdA.csv
├── pvalues_englishqualitynmdE.csv
├── pvalues_englishqualitynmdS.csv
├── pvalues_englishqualityrsnodA.csv
├── pvalues_englishqualityrsnodE.csv
├── pvalues_englishqualityrsnodS.csv
├── rank_chinese.csv
├── rank_english.csv
├── result_chinesenugget.csv
├── result_chinesequalityA.csv
├── result_chinesequalityE.csv
├── result_chinesequalityS.csv
├── result_englishnugget.csv
├── result_englishqualityA.csv
├── result_englishqualityE.csv
├── result_englishqualityS.csv
├── run_stat.csv
├── tau_chinesenugget.csv
├── tau_chinesequalityA.csv
├── tau_chinesequalityE.csv
├── tau_chinesequalityS.csv
├── tau_englishnugget.csv
├── tau_englishqualityA.csv
├── tau_englishqualityE.csv
└── tau_englishqualityS.csv