Skip to content

Commit

Permalink
Merge branch 'main' into harrison/whiten
Browse files Browse the repository at this point in the history
  • Loading branch information
HarrisonSantiago committed Nov 23, 2024
2 parents 2fd3296 + 60f3342 commit 00e9380
Show file tree
Hide file tree
Showing 12 changed files with 318 additions and 303 deletions.
63 changes: 0 additions & 63 deletions sparsecoding/data/datasets/bars.py

This file was deleted.

63 changes: 0 additions & 63 deletions sparsecoding/data/datasets/field.py

This file was deleted.

122 changes: 122 additions & 0 deletions sparsecoding/datasets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
import torch
import os
from scipy.io import loadmat
from sparsecoding.transforms.patch import patchify
from torch.utils.data import Dataset

from sparsecoding.priors import Prior


class BarsDataset(Dataset):
"""Toy dataset where the dictionary elements are horizontal and vertical bars.
Dataset elements are formed by taking linear combinations of the dictionary elements,
where the weights are sampled according to the input Prior.
Parameters
----------
patch_size : int
Side length for elements of the dataset.
dataset_size : int
Number of dataset elements to generate.
prior : Prior
Prior distribution on the weights. Should be sparse.
Attributes
----------
basis : Tensor, shape [2 * patch_size, patch_size, patch_size]
Dictionary elements (horizontal and vertical bars).
weights : Tensor, shape [dataset_size, 2 * patch_size]
Weights for each of the dataset elements.
data : Tensor, shape [dataset_size, patch_size, patch_size]
Weighted linear combinations of the basis elements.
"""

def __init__(
self,
patch_size: int,
dataset_size: int,
prior: Prior,
):
self.P = patch_size
self.N = dataset_size

one_hots = torch.nn.functional.one_hot(torch.arange(self.P)) # [P, P]
one_hots = one_hots.type(torch.float32) # [P, P]

h_bars = one_hots.reshape(self.P, self.P, 1)
v_bars = one_hots.reshape(self.P, 1, self.P)

h_bars = h_bars.expand(self.P, self.P, self.P)
v_bars = v_bars.expand(self.P, self.P, self.P)
self.basis = torch.cat((h_bars, v_bars), dim=0) # [2*P, P, P]

self.weights = prior.sample(self.N) # [N, 2*P]

self.data = torch.einsum(
"nd,dhw->nhw",
self.weights,
self.basis,
)

def __len__(self):
return self.N

def __getitem__(self, idx: int):
return self.data[idx]


class FieldDataset(Dataset):
"""Dataset used in Olshausen & Field (1996).
Paper:
https://courses.cs.washington.edu/courses/cse528/11sp/Olshausen-nature-paper.pdf
Emergence of simple-cell receptive field properties
by learning a sparse code for natural images.
Parameters
----------
root : str
Location to download the dataset to.
patch_size : int
Side length of patches for sparse dictionary learning.
stride : int, optional
Stride for sampling patches. If not specified, set to `patch_size`
(non-overlapping patches).
"""

B = 10
C = 1
H = 512
W = 512

def __init__(
self,
root: str,
patch_size: int = 8,
stride: int = None,
):
self.P = patch_size
if stride is None:
stride = patch_size

root = os.path.expanduser(root)
os.system(f"mkdir -p {root}")
if not os.path.exists(f"{root}/field.mat"):
os.system("wget https://rctn.org/bruno/sparsenet/IMAGES.mat")
os.system(f"mv IMAGES.mat {root}/field.mat")

self.images = torch.tensor(loadmat(f"{root}/field.mat")["IMAGES"]) # [H, W, B]
assert self.images.shape == (self.H, self.W, self.B)

self.images = torch.permute(self.images, (2, 0, 1)) # [B, H, W]
self.images = torch.reshape(self.images, (self.B, self.C, self.H, self.W)) # [B, C, H, W]

self.patches = patchify(patch_size, self.images, stride) # [B, N, C, P, P]
self.patches = torch.reshape(self.patches, (-1, self.C, self.P, self.P)) # [B*N, C, P, P]

def __len__(self):
return self.patches.shape[0]

def __getitem__(self, idx):
return self.patches[idx]
25 changes: 25 additions & 0 deletions sparsecoding/dictionaries.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import os
import torch
import numpy as np
import pickle as pkl

MODULE_PATH = os.path.dirname(__file__)
DICTIONARY_PATH = os.path.join(MODULE_PATH, "data/dictionaries")


def load_dictionary_from_pickle(path):
dictionary_file = open(path, 'rb')
numpy_dictionary = pkl.load(dictionary_file)
dictionary_file.close()
dictionary = torch.tensor(numpy_dictionary.astype(np.float32))
return dictionary


def load_bars_dictionary():
path = os.path.join(DICTIONARY_PATH, "bars", "bars-16_by_16.p")
return load_dictionary_from_pickle(path)


def load_olshausen_dictionary():
path = os.path.join(DICTIONARY_PATH, "olshausen", "olshausen-1.5x_overcomplete.p")
return load_dictionary_from_pickle(path)
Loading

0 comments on commit 00e9380

Please sign in to comment.