Skip to content

Python package for generating synthetic samples in eigenspace to minimize distortion

License

Notifications You must be signed in to change notification settings

rajanbit/EigenSample

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

License: MIT

EigenSample: Python package for generating synthetic samples in eigenspace to minimize distortion.

This repository contains a Python implementation of the EigenSample algorithm by Jayadeva et al., 2018, designed to generate synthetic samples in the eigenspace while minimizing distortion. Please note that this implementation is intended solely for learning purposes and does not claim any original work or contributions. Feel free to explore, learn from, and contribute to this repository!

Repos documentation

EigenSample/
├── doc
│   ├── EigenSample_tutorial.ipynb
│   └── EigenSample_user_guide.pdf
├── LICENSE.txt
├── pyproject.toml
├── README.md
├── setup.cfg
├── src
│   └── sampler
│       ├── eigenSample.py
│       └── __init__.py
└── test
    └── test_eigenSample.py

Requirements

  • Python >=3.10
  • Git

Installation

pip

git clone https://github.com/rajanbit/EigenSample.git
cd EigenSample/
python -m pip install --upgrade build
python -m build
pip install dist/EigenSample-0.1.0-py3-none-any.whl

conda

conda create -n eigensample python=3.10 git
conda activate eigensample
pip install git+https://github.com/rajanbit/EigenSample.git#egg=EigenSample

Reference

Jayadeva, Soman, S., & Saxena, S. (2018). EigenSample: A non-iterative technique for adding samples to small datasets. In Applied Soft Computing (Vol. 70, pp. 1064–1077). Elsevier BV. https://doi.org/10.1016/j.asoc.2017.08.017

About

Python package for generating synthetic samples in eigenspace to minimize distortion

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages