django-profiler is util for profiling python code mainly in django projects but can be used also on ordinary python code. It counts sql queries a measures time of code execution. It logs its output via standard python logging library and uses logger profiling. If your profiler name doesn't contain any empty spaces e.g. Profiler('Profiler1') django-profiler will log all the output to the profiling.Profiler logger.
- python 2.7+
Install via pip or copy this module into your project or into your PYTHON_PATH.
django settings.py constants
PROFILING_LOGGER_NAME PROFILING_SQL_QUERIES
It is possible to change default django-profiler logger name by defining PROFILING_LOGGER_NAME = 'logger_name' in your django settings.py.
To log also sql queries into profiler logger set PROFILING_SQL_QUERIES to True in your django settings.py module.
Example 1
Using context manager approach. Output will be logged to profiling logger.
from profiling import Profiler with Profiler('Complex Computation'): # code with some complex computations
Example 2
Using context manager approach. Output will be logged to profiling.Computation logger.
from profiling import Profiler with Profiler('Computation'): # code with some complex computations
Example 3
Using standard approach. Output will be logged to profiling logger.
from profiling import Profiler profiler = Profiler('Complex Computation') profiler.start() # code with some complex computations profiler.stop()
Example 4
Using standard approach and starting directly in constructor. Output will be logged to profiling logger.
from profiling import Profiler profiler = Profiler('Complex Computation', start=True) # code with some complex computations profiler.stop()
Example 5
Using decorator approach. Output will be logged to profiling.complex_computations logger.
from profiling import profile @profile def complex_computations(): #some complex computations
Example 6
Using decorator approach. Output will be logged to profiling.ComplexClass.complex_computations logger.
from profiling import profile class ComplexClass(object): @profile def complex_computations(): #some complex computations
Example 7
Using decorator approach. Output will be logged to profiling.complex_computations logger. profile execution stats are logged to profiling.complex_computations logger.
from profiling import profile @profile(stats=True) def complex_computations(): #some complex computations
Example 8
Using decorator approach. Output will be logged to profiling.complex_computations logger. profile execution stats are printed to sys.stdout.
import sys from profiling import profile @profile(stats=True, stats_buffer=sys.stdout) def complex_computations(): #some complex computations
Example 9
Using decorator approach. Output will be logged to profiling.ComplexClass.complex_computations logger. profile stats will be logged to profiling.ComplexClass.complex_computations.
from profiling import profile class ComplexClass(object) @profile(stats=True) def complex_computations(): #some complex computations
Example 10
Using decorator approach. Output will be stored in /tmp/stats and can be analyzed with pstats module. profile stats will be logged to profiling.ComplexClass.complex_computations.
from profiling import profile class ComplexClass(object) @profile(stats=True, stats_filename='/tmp/stats') def complex_computations(): #some complex computations
Tested on evnironment
- Xubuntu Linux 11.10 oneiric 64-bit
- python 2.7.2+
- python unittest
Running tests
To run the test run command:
$ python test.py $ python setup.py test