Skip to content

Commit

Permalink
[ImgBot] Optimize images
Browse files Browse the repository at this point in the history
*Total -- 48,308.20kb -> 38,952.65kb (19.37%)

/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/outliers_padding_ex.png -- 25.24kb -> 9.11kb (63.89%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/learning_autoencoder.png -- 12.69kb -> 5.56kb (56.16%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/sparse_encoders.png -- 7.91kb -> 3.48kb (55.94%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/quora_dataset.png -- 75.64kb -> 33.74kb (55.39%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/gradient_of_loss.png -- 7.08kb -> 3.45kb (51.3%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_train.png -- 5.31kb -> 2.61kb (50.82%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/final_loss_function.png -- 5.47kb -> 2.73kb (50.14%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/fr_embedding.png -- 6.92kb -> 3.47kb (49.91%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/new_triplet_loss.png -- 39.07kb -> 19.63kb (49.76%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_embeddings.png -- 7.65kb -> 3.87kb (49.39%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/accuracy.png -- 6.24kb -> 3.16kb (49.39%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/cosine_similarity.png -- 3.62kb -> 1.84kb (49.18%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/translation_problem.png -- 3.60kb -> 1.95kb (45.91%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/modified_forbenius_norm.png -- 3.02kb -> 1.66kb (44.96%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/description.png -- 5.85kb -> 3.25kb (44.49%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN.png -- 32.69kb -> 18.47kb (43.48%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/update_r.png -- 3.03kb -> 1.73kb (42.84%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/distance_formula.png -- 3.22kb -> 1.87kb (42.08%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/tanh_fn.png -- 216.79kb -> 126.69kb (41.56%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching@1x.png -- 55.89kb -> 32.68kb (41.53%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/triplet_loss.png -- 14.70kb -> 8.63kb (41.26%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/leaky_relu.png -- 239.64kb -> 142.08kb (40.71%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/original_forbenius_norm.png -- 2.40kb -> 1.45kb (39.55%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_decompost.png -- 4.23kb -> 2.63kb (37.8%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/CycleGAN_loss.png -- 139.58kb -> 87.27kb (37.48%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/CycleGAN_loss.png -- 139.58kb -> 87.27kb (37.48%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/denoising.png -- 34.70kb -> 21.73kb (37.36%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cyclegan_generator_ex.png -- 151.93kb -> 95.25kb (37.31%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cyclegan_generator_ex.png -- 151.93kb -> 95.25kb (37.31%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/DAE.png -- 1.46kb -> 0.92kb (37.22%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/discriminator_layers.png -- 104.30kb -> 65.72kb (36.99%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/discriminator_layers.png -- 104.30kb -> 65.72kb (36.99%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/30.eca_1.png -- 5.92kb -> 3.75kb (36.71%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/network_diagram.png -- 25.88kb -> 16.38kb (36.7%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching_ex.png -- 124.59kb -> 79.80kb (35.95%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/frob_in_trace.png -- 4.11kb -> 2.69kb (34.69%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/norms.png -- 4.17kb -> 2.73kb (34.61%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_network.png -- 22.58kb -> 14.80kb (34.47%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/max_norm.png -- 3.45kb -> 2.27kb (34.25%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/12. Dot product.png -- 488.90kb -> 321.92kb (34.15%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching.png -- 23.58kb -> 15.60kb (33.85%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/43.self_information.png -- 3.63kb -> 2.41kb (33.81%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/11. Autocorrect Tool/images/auto-correct.png -- 118.32kb -> 79.16kb (33.09%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/l1_norm.png -- 3.04kb -> 2.09kb (31.09%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_2.png -- 207.53kb -> 143.84kb (30.69%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. topic matrix -2.png -- 306.85kb -> 213.49kb (30.42%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a topic - 1.png -- 374.49kb -> 261.79kb (30.09%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/7. topic matrix - 1.png -- 298.55kb -> 208.83kb (30.05%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/14. Sample a topic-3.png -- 497.99kb -> 348.83kb (29.95%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace_transpose.png -- 3.52kb -> 2.47kb (29.92%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/51.bagging_3.png -- 3.08kb -> 2.16kb (29.82%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Skip-gram model.png -- 746.83kb -> 524.35kb (29.79%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/3. Matrix multiplication .png -- 624.24kb -> 441.60kb (29.26%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/8. Beta Distribution .png -- 252.73kb -> 178.82kb (29.25%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/10. decimal beta distribution .png -- 313.58kb -> 222.46kb (29.06%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/15. sample a topic - 2.png -- 655.19kb -> 464.83kb (29.05%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3.  document-term matric.png -- 465.81kb -> 330.79kb (28.99%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. matrix.png -- 465.81kb -> 330.79kb (28.99%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/1. C-BOW.png -- 402.19kb -> 285.91kb (28.91%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/siamese_networks.png -- 267.54kb -> 190.57kb (28.77%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/8. NMT with attention.png -- 253.07kb -> 180.34kb (28.74%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_2.png -- 69.64kb -> 49.66kb (28.69%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/2. text cleaning.png -- 295.47kb -> 210.91kb (28.62%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/4. Matrix multiplcation max.png -- 677.38kb -> 483.74kb (28.59%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/12. Dirichlet distribution .png -- 431.57kb -> 308.23kb (28.58%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/6. TF-IDF Matrix.png -- 482.89kb -> 345.33kb (28.49%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/5. BOW-Matrix.png -- 408.77kb -> 292.60kb (28.42%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/20. final topic model.png -- 621.05kb -> 444.78kb (28.38%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/14.equivariance.png -- 14.23kb -> 10.21kb (28.25%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/1. BOW.png -- 166.51kb -> 119.74kb (28.09%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/18. sample a word - 3.png -- 459.65kb -> 332.78kb (27.6%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. combining models.png -- 593.49kb -> 429.75kb (27.59%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a word-1.png -- 370.33kb -> 268.45kb (27.51%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_denoise.png -- 135.98kb -> 98.78kb (27.36%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/17. sample a word -2.png -- 520.15kb -> 378.19kb (27.29%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. document matrix.png -- 243.23kb -> 176.93kb (27.26%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/reviews_ex.png -- 66.56kb -> 48.47kb (27.19%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_1.png -- 151.92kb -> 110.76kb (27.1%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN@0.5x.png -- 15.81kb -> 11.55kb (26.94%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/2. Latent Variables.png -- 355.89kb -> 260.58kb (26.78%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/2. basic encoder-decoder.png -- 311.37kb -> 228.01kb (26.77%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/7. One-Hot Encoding.png -- 297.62kb -> 218.06kb (26.73%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/4. Corpus & Vocab.png -- 296.62kb -> 217.34kb (26.73%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_1.png -- 62.00kb -> 45.53kb (26.56%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/1. Naive Bayes Classifier/images/NLP Pipeline.png -- 423.16kb -> 310.97kb (26.51%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. Topic model.png -- 870.01kb -> 639.92kb (26.45%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_2.png -- 26.67kb -> 19.64kb (26.37%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/training_cycle_ex.png -- 184.52kb -> 136.44kb (26.06%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/training_cycle_ex.png -- 184.52kb -> 136.44kb (26.06%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/forward_pass.png -- 23.42kb -> 17.36kb (25.87%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/1. drawbacks of seq2seq.png -- 241.22kb -> 179.17kb (25.73%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/SVD.png -- 2.62kb -> 1.95kb (25.62%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/07.b_computation.png -- 43.40kb -> 32.34kb (25.49%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/3. transformer model.png -- 301.77kb -> 224.86kb (25.49%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/06.f_computation.png -- 31.97kb -> 23.90kb (25.26%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/38. variance.png -- 8.29kb -> 6.20kb (25.22%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_final_algo.png -- 65.62kb -> 49.11kb (25.15%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/orthonormal_matrix.png -- 2.91kb -> 2.18kb (25.07%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_3.png -- 65.62kb -> 49.25kb (24.94%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/41.Properties_of_softplus.png -- 23.15kb -> 17.38kb (24.93%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/08.toeplitz_matrix_1d.png -- 12.13kb -> 9.11kb (24.85%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/13. 3D D Distributions.png -- 664.15kb -> 500.93kb (24.58%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/8. Word Embeddings.png -- 245.76kb -> 185.69kb (24.44%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/11. Co-occurance probability.png -- 438.21kb -> 331.56kb (24.34%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/pos_review.png -- 35.03kb -> 26.54kb (24.26%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/3. word alignment.png -- 214.96kb -> 163.13kb (24.11%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Word Embeddings - 1.png -- 212.00kb -> 160.96kb (24.07%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. Bayesian_stats.png -- 5.47kb -> 4.16kb (23.94%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.bagging_4.png -- 9.88kb -> 7.52kb (23.88%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/9. flexible attention.png -- 207.10kb -> 157.83kb (23.79%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/6. Inside attention layer.png -- 284.08kb -> 216.50kb (23.79%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/normas_2.png -- 2.37kb -> 1.80kb (23.74%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/10. Word2Vec.png -- 338.60kb -> 260.85kb (22.96%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/50. SSE.png -- 4.09kb -> 3.15kb (22.96%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/neg_review.png -- 45.31kb -> 34.95kb (22.87%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/3. Bigrams.png -- 484.46kb -> 373.73kb (22.86%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/7. Transition Probability.png -- 608.32kb -> 469.48kb (22.82%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/1. basic seq-to-seq model.png -- 242.75kb -> 187.35kb (22.82%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/7. Conditional_prob.png -- 3.79kb -> 2.92kb (22.82%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_block.png -- 33.53kb -> 25.91kb (22.73%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_block.png -- 33.53kb -> 25.91kb (22.73%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/2. look-up table.png -- 416.13kb -> 321.70kb (22.69%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/20. step - 6.png -- 306.69kb -> 237.71kb (22.49%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. MAP.png -- 5.59kb -> 4.34kb (22.3%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/41.bt_computation.png -- 17.84kb -> 13.87kb (22.28%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/4. alignment and attention.png -- 355.30kb -> 276.24kb (22.25%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/19. step - 5.png -- 248.33kb -> 193.12kb (22.23%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/2.NMT basic model.png -- 210.69kb -> 164.08kb (22.12%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/16.l1_objective_function.png -- 3.59kb -> 2.80kb (22.01%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/26. step - 12.png -- 497.00kb -> 387.69kb (21.99%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/40. co_variance_02.png -- 3.43kb -> 2.67kb (21.99%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/euclidean_norm.png -- 2.79kb -> 2.18kb (21.8%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/25. step - 11.png -- 483.12kb -> 378.03kb (21.75%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/23. step - 9.png -- 447.99kb -> 350.63kb (21.73%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/04. unfolded_terminologies.png -- 27.05kb -> 21.17kb (21.73%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/22. step - 8.png -- 382.98kb -> 299.78kb (21.73%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/21. step - 7.png -- 334.19kb -> 261.74kb (21.68%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/24. step - 10.png -- 456.51kb -> 358.16kb (21.54%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/18.update_for_momentum.png -- 7.47kb -> 5.86kb (21.54%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/19.first_result_calculus_tools.png -- 3.79kb -> 2.98kb (21.44%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/20.nestrov_momentum_update.png -- 7.78kb -> 6.12kb (21.41%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. unbiased_variance_estimator.png -- 3.89kb -> 3.06kb (21.37%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/15.l1_regularization.png -- 2.62kb -> 2.06kb (21.36%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/18.l1_decomposition_over_params.png -- 5.41kb -> 4.26kb (21.25%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/28.softplus_logit.png -- 6.93kb -> 5.46kb (21.12%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/26.Precision_matrix.png -- 6.92kb -> 5.46kb (21.11%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/27. step - 13.png -- 525.49kb -> 415.01kb (21.02%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/reconstruction_error.png -- 114.79kb -> 90.90kb (20.82%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/reconstruction_error.png -- 114.79kb -> 90.90kb (20.82%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/02.emperical_risk.png -- 7.41kb -> 5.87kb (20.79%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/33.effect_of_constraints.png -- 7.37kb -> 5.84kb (20.78%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cycle_consistency_ex.png -- 371.97kb -> 294.67kb (20.78%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cycle_consistency_ex.png -- 371.97kb -> 294.67kb (20.78%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/33.regularized_newton.png -- 4.77kb -> 3.78kb (20.71%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/XY_season_images.png -- 275.48kb -> 218.42kb (20.71%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/XY_season_images.png -- 275.48kb -> 218.42kb (20.71%)
/Chapter-wise code/logo/Pytorch_logo.png -- 19.23kb -> 15.26kb (20.64%)
/Chapter-wise code/Code - PyTorch/logo/Pytorch_logo.png -- 19.23kb -> 15.26kb (20.64%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.effect_of_dropout.png -- 66.39kb -> 52.70kb (20.61%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/18. max_likelihood_estimation.png -- 7.39kb -> 5.87kb (20.59%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/25.Multivariate_distribution.png -- 7.47kb -> 5.93kb (20.56%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/15. MSE.png -- 4.88kb -> 3.88kb (20.5%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/15.Covariance.png -- 5.21kb -> 4.15kb (20.39%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/31.taylor_expansion.png -- 6.51kb -> 5.18kb (20.38%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/16. step - 2.png -- 118.75kb -> 94.60kb (20.34%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/19.minimize_function.png -- 4.40kb -> 3.51kb (20.23%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/18.Bernoulli_distribution.png -- 7.27kb -> 5.80kb (20.19%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/03.l2_norm_penalty.png -- 2.28kb -> 1.82kb (20.09%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/39. co_variance_01.png -- 3.65kb -> 2.92kb (20.07%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/23.Precision.png -- 5.29kb -> 4.23kb (20.07%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. standard_error.png -- 5.00kb -> 4.00kb (20.02%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/07. test_error.png -- 3.60kb -> 2.88kb (19.98%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/33. sample_covariance.png -- 2.19kb -> 1.75kb (19.96%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/2. AWS Sagemaker dashboard.png -- 109.80kb -> 87.89kb (19.95%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/05.commutative_lhs.png -- 5.14kb -> 4.12kb (19.93%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/18. step - 4.png -- 171.40kb -> 137.32kb (19.89%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/7. attention visual - 1.png -- 117.12kb -> 93.87kb (19.85%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/6. T5 model.png -- 517.77kb -> 415.00kb (19.85%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/12.Expectation_for_continous_variables.png -- 3.71kb -> 2.97kb (19.77%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/29.Laplace.png -- 4.40kb -> 3.53kb (19.76%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/15. step - 1.png -- 145.59kb -> 116.98kb (19.65%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/32.solution_to_constrained_lagrange.png -- 4.65kb -> 3.74kb (19.64%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/31.Emperical.png -- 3.46kb -> 2.78kb (19.6%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/04.jacobian_matrix.png -- 3.96kb -> 3.19kb (19.53%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/47.polyak_averaging_noncovex.png -- 3.40kb -> 2.74kb (19.49%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/1. AWS console dashboard.png -- 115.76kb -> 93.28kb (19.42%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/38.peturbed_obj_funct.png -- 4.22kb -> 3.40kb (19.39%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/42.Baeyes.png -- 3.24kb -> 2.61kb (19.37%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/span.png -- 2.41kb -> 1.94kb (19.36%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/39.Softplus.png -- 1.86kb -> 1.50kb (19.31%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/10.wt_expansion.png -- 4.49kb -> 3.63kb (19.26%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/20. conditional_mle.png -- 5.01kb -> 4.05kb (19.22%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/5. Calculating alignment for NMT model.png -- 576.54kb -> 465.75kb (19.22%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/9.Indipendence_Rule.png -- 4.50kb -> 3.63kb (19.17%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/16.non_linear_model.png -- 5.00kb -> 4.04kb (19.14%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/20.second_result_calculus_tools.png -- 4.72kb -> 3.82kb (19.11%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/02.MSE.png -- 3.68kb -> 2.98kb (19.01%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/18.optimization_problem.png -- 4.84kb -> 3.92kb (18.98%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/04.2-D-cnn.png -- 9.38kb -> 7.61kb (18.84%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/5. Emission Probability.png -- 379.97kb -> 308.89kb (18.71%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/12. bias.png -- 2.28kb -> 1.85kb (18.69%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/19. max_lik_est_expect.png -- 4.45kb -> 3.62kb (18.63%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.stable_softmax.png -- 4.98kb -> 4.05kb (18.62%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/3.jpd_1.png -- 2.15kb -> 1.75kb (18.6%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/06.commutative_rhs.png -- 4.72kb -> 3.85kb (18.55%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/24.linear_approach_to_bernoulli.png -- 5.20kb -> 4.24kb (18.52%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/17. step - 3.png -- 148.35kb -> 120.91kb (18.5%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/14. with teacher forcing.png -- 326.48kb -> 266.17kb (18.47%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/22.Gaussian_distribution.png -- 5.39kb -> 4.41kb (18.24%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/32.update_rule_newton.png -- 2.96kb -> 2.42kb (18.17%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/01.cost_function_for_entire_data_set.png -- 4.34kb -> 3.56kb (18.11%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/5. positional encoding.png -- 211.50kb -> 173.58kb (17.93%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/07.cross_correlation.png -- 4.71kb -> 3.86kb (17.93%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/11.l2_effect_of_weight_decay.png -- 4.60kb -> 3.78kb (17.91%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/6.Marginal_prob_continous.png -- 2.56kb -> 2.10kb (17.8%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/03.vectorized_chain_rule.png -- 3.06kb -> 2.52kb (17.71%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.linear_output.png -- 2.32kb -> 1.91kb (17.68%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/01.function_composition.png -- 2.77kb -> 2.28kb (17.64%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_example.png -- 9.04kb -> 7.45kb (17.61%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/25. linear_regression.png -- 2.44kb -> 2.01kb (17.51%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/02.function_chain_rule.png -- 3.71kb -> 3.06kb (17.4%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/39.leaky_relu.png -- 3.47kb -> 2.87kb (17.22%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.am_pd_dropout.png -- 3.39kb -> 2.81kb (17.08%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/28. BLEU Score Calculation.png -- 408.23kb -> 338.55kb (17.07%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/28. Kernels.png -- 3.26kb -> 2.70kb (17.06%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/06.mse_linear_transformations.png -- 4.94kb -> 4.10kb (16.96%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/24.Standard_Normal_Distribution.png -- 25.94kb -> 21.55kb (16.9%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/34.maximization_goal.png -- 4.34kb -> 3.61kb (16.87%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/11.sgd_convergence.png -- 4.45kb -> 3.70kb (16.86%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/09.l2_quadratic_approximation.png -- 4.21kb -> 3.50kb (16.78%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/36.Sigmoid_function.png -- 2.24kb -> 1.86kb (16.75%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/13.Rules_of_expectation.png -- 4.13kb -> 3.44kb (16.74%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.am_pd_bagging.png -- 3.36kb -> 2.80kb (16.73%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/10. data in NMT.png -- 181.07kb -> 150.80kb (16.71%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/orthogonal_matrix.png -- 2.28kb -> 1.90kb (16.69%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/17.cross_entropy.png -- 4.97kb -> 4.14kb (16.68%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/13. No teacher forcing.png -- 334.82kb -> 279.04kb (16.66%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/24.traditional_convolution.png -- 48.38kb -> 40.32kb (16.65%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_vector.png -- 1.85kb -> 1.54kb (16.6%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/25.sigmoid_bernoulli.png -- 2.54kb -> 2.12kb (16.58%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/29.softplus.png -- 3.18kb -> 2.66kb (16.57%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/26. logistic_regression.png -- 2.48kb -> 2.07kb (16.53%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/15.relu_graph.png -- 9.56kb -> 7.98kb (16.47%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/11. NMT setup-english.png -- 552.26kb -> 461.51kb (16.43%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/02.chain_rul.png -- 2.74kb -> 2.29kb (16.41%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/8.Chain_Rule.png -- 4.54kb -> 3.80kb (16.39%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/40.conjugates.png -- 1.89kb -> 1.58kb (16.36%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/10.Conditional_Indipendence.png -- 5.04kb -> 4.22kb (16.34%)
/Chapter-wise code/Code - PyTorch/images/install_pytorch.png -- 23.96kb -> 20.05kb (16.3%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/14.Variance.png -- 3.20kb -> 2.68kb (16.27%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/diag_matrix_2.png -- 1.76kb -> 1.47kb (16.27%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/38.Softplus_function.png -- 2.55kb -> 2.14kb (16.2%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/12.decomposition_of_hessian_matrix.png -- 9.18kb -> 7.69kb (16.19%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/10.l2_approximaton_minimal.png -- 3.16kb -> 2.65kb (16.09%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/11.Expectation.png -- 3.03kb -> 2.54kb (16.08%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/04.ill_conditioning.png -- 2.16kb -> 1.81kb (15.99%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/4. multi-head attention.png -- 233.07kb -> 195.81kb (15.99%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/05.non_linear_function.png -- 3.67kb -> 3.08kb (15.98%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/03.1-D-cnn.png -- 7.17kb -> 6.02kb (15.96%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/30.Dirac_delta.png -- 1.88kb -> 1.58kb (15.93%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/36.congugate_solution.png -- 2.91kb -> 2.45kb (15.86%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/41.maxout_units.png -- 3.12kb -> 2.62kb (15.83%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/35.obj_function_without_noise.png -- 2.95kb -> 2.48kb (15.78%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. asymptotically_unbiased.png -- 2.47kb -> 2.08kb (15.78%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/48.supervised_pretraining.png -- 83.39kb -> 70.27kb (15.74%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/40.param_relu.png -- 3.90kb -> 3.29kb (15.71%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/transpose.png -- 3.23kb -> 2.72kb (15.68%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/31.softmax_fucntion.png -- 15.39kb -> 12.98kb (15.67%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/23.tiled_convolution.png -- 65.05kb -> 54.88kb (15.63%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/8. Sentence generation.png -- 305.21kb -> 257.75kb (15.55%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/21. Parameters_controlling_normal_distribution.png -- 2.38kb -> 2.01kb (15.53%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/29. Kernels_2.png -- 2.82kb -> 2.39kb (15.34%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.complete_linear_xor.png -- 4.47kb -> 3.78kb (15.33%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/32.Multinouli_distribution.png -- 3.02kb -> 2.56kb (15.16%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/diagnol_matrix.png -- 1.72kb -> 1.46kb (15.12%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/12. NMT setup - german.png -- 685.37kb -> 582.14kb (15.06%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/7. running notebook.png -- 60.06kb -> 51.08kb (14.95%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/08.linear_hidden.png -- 2.25kb -> 1.92kb (14.88%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/12.learning_rate_decay.png -- 2.00kb -> 1.70kb (14.88%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/21.Gaussian_distribution.png -- 2.77kb -> 2.36kb (14.78%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/16. relationship_graph.png -- 27.69kb -> 23.60kb (14.77%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/07.l2_weight_update_3.png -- 3.28kb -> 2.80kb (14.74%)
/Chapter-wise code/Code - PyTorch/images/activating_gpu_2.png -- 28.01kb -> 23.91kb (14.65%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/25.computation.png -- 38.01kb -> 32.48kb (14.54%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/30. dot_product.png -- 1.91kb -> 1.63kb (14.53%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/mpr.png -- 1.73kb -> 1.48kb (14.42%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charseq.jpeg -- 82.79kb -> 70.88kb (14.39%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/5. TF-IDF.png -- 187.09kb -> 160.23kb (14.36%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/43.Effect_of_depth_on_accuracy.png -- 65.94kb -> 56.48kb (14.35%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/29.lagrange_with_constrains.png -- 4.67kb -> 4.01kb (14.29%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/14.relu.png -- 2.47kb -> 2.12kb (14.24%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/1. pos tagging.png -- 137.33kb -> 117.78kb (14.24%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/29. ROUGE Score Calculation.png -- 292.32kb -> 250.87kb (14.18%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/36.peturbation.png -- 2.24kb -> 1.92kb (14.17%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/general_rule.png -- 16.95kb -> 14.55kb (14.14%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/06.l2_weight_update_2.png -- 3.18kb -> 2.73kb (14.12%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/4.pdf_interval.png -- 1.78kb -> 1.53kb (14.08%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/33.conditions.png -- 2.59kb -> 2.23kb (14.03%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/08.jacobian_matrix.png -- 3.30kb -> 2.84kb (14.01%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/17. consistency.png -- 1.85kb -> 1.59kb (14.01%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/5.Marginal_prob.png -- 3.06kb -> 2.63kb (14%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/26.structured_outputs.png -- 60.36kb -> 51.95kb (13.93%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/36.ReLU_generalization.png -- 3.48kb -> 3.00kb (13.92%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_pipeline.png -- 192.15kb -> 165.71kb (13.76%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/11.linear_network.png -- 2.22kb -> 1.92kb (13.7%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/35.saturation_condition_01.png -- 1.98kb -> 1.71kb (13.69%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/11. function_estimator.png -- 1.60kb -> 1.38kb (13.66%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/6. Hidden Markov Model.png -- 399.13kb -> 344.96kb (13.57%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/13.relu_applied.png -- 2.41kb -> 2.09kb (13.35%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/07.linear_model.png -- 2.55kb -> 2.21kb (13.31%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/default_initialization.png -- 16.32kb -> 14.16kb (13.25%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.prob_dist.png -- 1.80kb -> 1.56kb (13.17%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/22. data_likelihood.png -- 2.26kb -> 1.97kb (13.03%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/27.Exponential_Distribution.png -- 2.67kb -> 2.33kb (13.03%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/17.l1_gradient.png -- 3.66kb -> 3.18kb (12.98%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/35.congugate_directions.png -- 61.52kb -> 53.54kb (12.98%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/32. ith-example.png -- 1.66kb -> 1.44kb (12.85%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_50.png -- 85.95kb -> 74.96kb (12.79%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_50.png -- 85.95kb -> 74.96kb (12.79%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/2.jpd_2.png -- 1.63kb -> 1.42kb (12.77%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/42.tanh.png -- 2.59kb -> 2.26kb (12.75%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/4. ET probabilities.png -- 204.76kb -> 178.87kb (12.64%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/04. MSE-train.png -- 2.07kb -> 1.81kb (12.57%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/09.circulant_matrix.png -- 20.91kb -> 18.28kb (12.57%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/06. linear_regression.png -- 1.51kb -> 1.33kb (12.39%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. bias_of_variance_of_gaussian_distribution.png -- 1.57kb -> 1.38kb (12.35%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_1.png -- 24.69kb -> 21.67kb (12.24%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/37. eigen_vectors.png -- 3.19kb -> 2.81kb (12.08%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.ill_conditioing_in_taylor_series.png -- 2.80kb -> 2.46kb (11.93%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/08. Error_graph.png -- 25.38kb -> 22.35kb (11.92%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/22.unshared_convolution.png -- 38.47kb -> 33.89kb (11.91%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/13.eigen_decomposition.png -- 24.93kb -> 21.97kb (11.88%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/1.uniform_distribution.png -- 1.65kb -> 1.46kb (11.83%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/08.l2_minimum_training_cost.png -- 2.30kb -> 2.03kb (11.67%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/12.sparse_connections.png -- 108.77kb -> 96.09kb (11.65%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/16.Covariance_matrix.png -- 2.60kb -> 2.30kb (11.6%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/normal_vs_general.png -- 22.96kb -> 20.30kb (11.6%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/05. Optimum_weight.png -- 4.28kb -> 3.79kb (11.42%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/unit_vector.png -- 1.47kb -> 1.30kb (11.33%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/34.prior_probability.png -- 1.38kb -> 1.22kb (11.27%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/uniform_weights.png -- 18.88kb -> 16.77kb (11.19%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/31. kernel_predictions.png -- 2.97kb -> 2.64kb (11.07%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/mini_batch_1.png -- 43.84kb -> 38.99kb (11.07%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/10. point_estimator.png -- 2.56kb -> 2.28kb (11.05%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/zeros_vs_ones.png -- 16.53kb -> 14.70kb (11.04%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/38.active_relu_condition_2.png -- 1.38kb -> 1.23kb (10.93%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/61.effect_of_dataset_size.png -- 35.95kb -> 32.02kb (10.92%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/41.multi_task_learning.png -- 31.98kb -> 28.52kb (10.84%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/40.Softplus_graph.png -- 9.85kb -> 8.81kb (10.5%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/33.Gaussian_mixture.png -- 1.37kb -> 1.23kb (10.47%)
/Chapter-wise code/Code - PyTorch/1. Intro to PyTorch/images/jacobian_product.png -- 38.68kb -> 34.67kb (10.39%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/37.Sigmoid_graph.png -- 10.17kb -> 9.15kb (9.99%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/03. training_set.png -- 2.03kb -> 1.83kb (9.91%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/43.memory_space_BFGS.png -- 1.30kb -> 1.18kb (9.36%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/05.graphs_and_chain_rule.png -- 30.35kb -> 27.53kb (9.3%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/21.case_1_2.png -- 1.25kb -> 1.14kb (9.18%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/symmetric_matrix.png -- 1.50kb -> 1.36kb (9.14%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/26.first_sigmoid_layer.png -- 1.45kb -> 1.32kb (9.1%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/17.Covariance_matrix_2.png -- 2.28kb -> 2.07kb (9.05%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.linear_approach_for_softmax.png -- 1.63kb -> 1.49kb (8.97%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/22.case_2_2.png -- 1.24kb -> 1.13kb (8.77%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.issue_with_local_minima.png -- 46.35kb -> 42.38kb (8.56%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/08.gradient_clipping.png -- 23.83kb -> 21.81kb (8.46%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/01.computational_graphs.png -- 66.37kb -> 60.77kb (8.44%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/29.sepearable_kernel.png -- 1.44kb -> 1.32kb (8.36%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/45.param_tying_01.png -- 11.52kb -> 10.56kb (8.3%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/21. examples.png -- 1.65kb -> 1.51kb (8.3%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/horse2zebra.jpg -- 26.52kb -> 24.33kb (8.26%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/horse2zebra.jpg -- 26.52kb -> 24.33kb (8.26%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/34.computational_complex_newton.png -- 1.32kb -> 1.22kb (7.98%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/15.gradient.png -- 15.64kb -> 14.40kb (7.92%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/28.gen_lag_constrains.png -- 15.37kb -> 14.16kb (7.85%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_097.png -- 2.70kb -> 2.49kb (7.77%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/22.linear_units.png -- 1.69kb -> 1.56kb (7.75%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/properties_of_norm.png -- 14.12kb -> 13.04kb (7.63%)
/Deep Learning Nanodegree Certificate/images/final_completion_certificate.png -- 142.19kb -> 131.39kb (7.6%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/28.traditional_kernel.png -- 1.22kb -> 1.13kb (7.38%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/training_loss.png -- 27.74kb -> 25.72kb (7.29%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/linear_combination'.png -- 2.24kb -> 2.08kb (7.28%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/46.comparison_bw_bn_nonbn.png -- 145.92kb -> 135.40kb (7.21%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/22.grad_update_for_adagrad.png -- 15.15kb -> 14.07kb (7.16%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/09.linear_deep_network.png -- 22.28kb -> 20.69kb (7.16%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/5. create IAM role.png -- 85.44kb -> 79.39kb (7.08%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/25.rmsprop_gradient.png -- 15.29kb -> 14.22kb (7.03%)
/images/deep-learning-book-goodfellow-cover.jpg -- 181.02kb -> 168.33kb (7.01%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/44.Shannon_entropy.png -- 7.54kb -> 7.03kb (6.82%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.eight_detector.png -- 101.06kb -> 94.21kb (6.78%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_embeddings.png -- 34.16kb -> 31.85kb (6.77%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/6. notebook instance settings.png -- 97.64kb -> 91.08kb (6.72%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/49.Directed_graphs.png -- 6.02kb -> 5.62kb (6.6%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/9. gamma function.png -- 30.23kb -> 28.27kb (6.48%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/identity_matrix.png -- 2.11kb -> 1.98kb (6.39%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/27.update_rmsprop.png -- 7.20kb -> 6.75kb (6.27%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/23.accumulate_adagrad.png -- 20.69kb -> 19.41kb (6.15%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace.png -- 4.16kb -> 3.91kb (6.1%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/30.final_update_adam.png -- 5.90kb -> 5.56kb (5.74%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/52.Normalizing_constant.png -- 6.07kb -> 5.73kb (5.71%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/27.single_vs_multichanel.png -- 46.17kb -> 43.57kb (5.65%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/04.hidden_layer.png -- 1.69kb -> 1.60kb (5.44%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/27.sigmoidal_transformation_of_logit.png -- 53.02kb -> 50.24kb (5.25%)
/Chapter-wise code/Code - PyTorch/images/activating_gpu.png -- 49.22kb -> 46.67kb (5.19%)
/Chapter-wise code/images/ben_passmore.jpg -- 318.59kb -> 302.16kb (5.16%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/26.accumulate_rmsprop.png -- 9.40kb -> 8.92kb (5.11%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.dropout_modelling.png -- 117.26kb -> 111.39kb (5.01%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/data/15. rnn_classifier.png -- 10.75kb -> 10.22kb (4.96%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_096.png -- 1.96kb -> 1.86kb (4.93%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/47.Cross_entropy.png -- 6.12kb -> 5.83kb (4.77%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/45.KL_divergence.png -- 13.94kb -> 13.31kb (4.54%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.updated_convolution_operation.png -- 24.69kb -> 23.57kb (4.53%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/19.accumulate_velocity.png -- 4.56kb -> 4.36kb (4.45%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/09. weight_decay.png -- 5.63kb -> 5.38kb (4.41%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/before_after_ev.png -- 41.55kb -> 39.72kb (4.4%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/54.Undirected_graph_2.png -- 8.92kb -> 8.53kb (4.38%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generator_discriminator_loss.png -- 19.07kb -> 18.29kb (4.13%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/45.batch_transformation.png -- 21.76kb -> 20.91kb (3.9%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/28.momentum_update_adam.png -- 12.73kb -> 12.23kb (3.86%)
/Chapter-wise code/images/octopus.jpg -- 90.07kb -> 86.62kb (3.83%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace_comm.png -- 7.81kb -> 7.51kb (3.81%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/46.param_tying_02.png -- 9.02kb -> 8.70kb (3.49%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/47.param_tying_03.png -- 6.69kb -> 6.46kb (3.47%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/16.update.png -- 4.05kb -> 3.92kb (3.44%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/55.OOB_2.png -- 11.06kb -> 10.68kb (3.37%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.dropout_modelling_00'.png -- 123.91kb -> 119.80kb (3.32%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/split_2_points.png -- 57.26kb -> 55.37kb (3.31%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/46. softmax_classifictaion_problem.png -- 62.86kb -> 60.78kb (3.3%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/37.peturbed_model.png -- 1.36kb -> 1.32kb (3.29%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/24.update_adagrad.png -- 13.14kb -> 12.71kb (3.21%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/29.bias_update_adam.png -- 27.79kb -> 26.90kb (3.2%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/43.Hard_MTL.png -- 33.13kb -> 32.11kb (3.07%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/3. zero notebook instances.png -- 53.90kb -> 52.34kb (2.9%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/11.doubly_circulant_matrix.png -- 85.16kb -> 82.71kb (2.88%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/50.bagging_2.png -- 12.58kb -> 12.22kb (2.84%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/4. name your notebook.png -- 105.44kb -> 102.46kb (2.83%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/05.l2_weight_update.png -- 3.50kb -> 3.41kb (2.81%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/06.saddle_point.png -- 71.64kb -> 69.68kb (2.74%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/mpr_formula.png -- 5.24kb -> 5.11kb (2.48%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/46.KL_properties.png -- 5.40kb -> 5.27kb (2.39%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.convolution_operation.png -- 21.34kb -> 20.84kb (2.33%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/regression.png -- 1.14kb -> 1.12kb (1.8%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/53.Undirected_graph.png -- 18.18kb -> 17.88kb (1.66%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/48.Structured_probability.png -- 6.30kb -> 6.20kb (1.58%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_098.png -- 1.69kb -> 1.66kb (1.5%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_l2_regularization.png -- 90.91kb -> 89.72kb (1.31%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/10.curculant_matrix.png -- 64.44kb -> 63.63kb (1.27%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/dot_product.png -- 4.47kb -> 4.42kb (1.2%)
/Chapter-wise code/images/hockney.jpg -- 18.31kb -> 18.11kb (1.1%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/53.bagging_examples.png -- 35.56kb -> 35.20kb (1.01%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/50.Directed_graph_2.png -- 19.66kb -> 19.50kb (0.82%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_vs_l2.png -- 64.39kb -> 63.95kb (0.68%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/48.param_tying_04.png -- 50.73kb -> 50.39kb (0.67%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/13.comparison_sparse_interactions.png -- 155.61kb -> 154.69kb (0.59%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/sample-004000-summer2winter.png -- 934.39kb -> 930.58kb (0.41%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/sample-004000-summer2winter.png -- 934.39kb -> 930.58kb (0.41%)
/Chapter-wise code/images/target.png -- 366.91kb -> 365.87kb (0.28%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/51.Directed_graph_3.png -- 9.33kb -> 9.30kb (0.28%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/summer_to_winter.png -- 527.83kb -> 526.52kb (0.25%)
/Chapter-wise code/images/target_octopus.png -- 233.01kb -> 232.43kb (0.25%)
/Chapter-wise code/images/style_purva.png -- 349.62kb -> 348.80kb (0.23%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/winter_to_summer.png -- 504.69kb -> 503.56kb (0.23%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/03.batch_vs_minibatch.png -- 305.47kb -> 305.06kb (0.13%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/17. effect_of_ratio.png -- 446.70kb -> 446.22kb (0.11%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth_2.png -- 121.01kb -> 120.89kb (0.1%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/39.noise_robustness.png -- 238.78kb -> 238.54kb (0.1%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/07. lstm_basics_3.png -- 108.09kb -> 107.99kb (0.09%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/lstm_rnn_architecture.png -- 94.24kb -> 94.16kb (0.09%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/02. RNN.png -- 129.56kb -> 129.45kb (0.08%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/03. CNNs'.png -- 120.82kb -> 120.73kb (0.07%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/05. lstm_basics_1.png -- 76.29kb -> 76.24kb (0.06%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/59. grad_desc.png -- 85.23kb -> 85.18kb (0.06%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/55. mount_err_5.png -- 66.65kb -> 66.61kb (0.06%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/02.content_and_style_image.png -- 199.24kb -> 199.13kb (0.06%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/02. MLP.png -- 118.47kb -> 118.41kb (0.05%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/machine_learning_workflow.png -- 72.92kb -> 72.89kb (0.05%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generated_faces.png -- 111.66kb -> 111.62kb (0.04%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/momentum.png -- 98.54kb -> 98.51kb (0.03%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/44.param_sharing_for_CNN.png -- 260.12kb -> 260.03kb (0.03%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/53. mount_err_3.png -- 59.60kb -> 59.58kb (0.03%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/nn_over_and_under_fitting.png -- 175.95kb -> 175.90kb (0.03%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth.png -- 101.60kb -> 101.57kb (0.03%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/predicts_split_2_points.png -- 141.95kb -> 141.92kb (0.02%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/14. remember_gate.png -- 92.04kb -> 92.02kb (0.01%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/34.data_augmentation.png -- 194.98kb -> 194.96kb (0.01%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/06. lstm_basics_2.png -- 97.61kb -> 97.61kb (0%)

Signed-off-by: ImgBotApp <ImgBotHelp@gmail.com>
  • Loading branch information
ImgBotApp committed Mar 4, 2021
1 parent 51dd97d commit f8e9889
Show file tree
Hide file tree
Showing 483 changed files with 0 additions and 0 deletions.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified Chapter-wise code/Code - PyTorch/images/activating_gpu.png
Binary file modified Chapter-wise code/Code - PyTorch/images/activating_gpu_2.png
Binary file modified Chapter-wise code/Code - PyTorch/images/install_pytorch.png
Binary file modified Chapter-wise code/Code - PyTorch/logo/Pytorch_logo.png
Binary file modified Chapter-wise code/images/ben_passmore.jpg
Binary file modified Chapter-wise code/images/hockney.jpg
Binary file modified Chapter-wise code/images/octopus.jpg
Binary file modified Chapter-wise code/images/style_purva.png
Binary file modified Chapter-wise code/images/target.png
Binary file modified Chapter-wise code/images/target_octopus.png
Binary file modified Chapter-wise code/logo/Pytorch_logo.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/SVD.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_096.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_097.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_098.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/diag_matrix_2.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/diagnol_matrix.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/dot_product.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_vector.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/euclidean_norm.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/frob_in_trace.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/identity_matrix.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/l1_norm.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/max_norm.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/mpr.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/mpr_formula.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/normas_2.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/norms.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/span.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/symmetric_matrix.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/trace.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/trace_comm.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/transpose.png
Binary file modified Chapter-wise notes/Ch_1_Linear_algebra/images/unit_vector.png
Binary file modified Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/02.MSE.png
Loading

0 comments on commit f8e9889

Please sign in to comment.