Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
*Total -- 48,308.20kb -> 38,952.65kb (19.37%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/outliers_padding_ex.png -- 25.24kb -> 9.11kb (63.89%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/learning_autoencoder.png -- 12.69kb -> 5.56kb (56.16%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/sparse_encoders.png -- 7.91kb -> 3.48kb (55.94%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/quora_dataset.png -- 75.64kb -> 33.74kb (55.39%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/gradient_of_loss.png -- 7.08kb -> 3.45kb (51.3%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_train.png -- 5.31kb -> 2.61kb (50.82%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/final_loss_function.png -- 5.47kb -> 2.73kb (50.14%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/fr_embedding.png -- 6.92kb -> 3.47kb (49.91%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/new_triplet_loss.png -- 39.07kb -> 19.63kb (49.76%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_embeddings.png -- 7.65kb -> 3.87kb (49.39%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/accuracy.png -- 6.24kb -> 3.16kb (49.39%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/cosine_similarity.png -- 3.62kb -> 1.84kb (49.18%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/translation_problem.png -- 3.60kb -> 1.95kb (45.91%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/modified_forbenius_norm.png -- 3.02kb -> 1.66kb (44.96%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/description.png -- 5.85kb -> 3.25kb (44.49%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN.png -- 32.69kb -> 18.47kb (43.48%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/update_r.png -- 3.03kb -> 1.73kb (42.84%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/distance_formula.png -- 3.22kb -> 1.87kb (42.08%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/tanh_fn.png -- 216.79kb -> 126.69kb (41.56%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching@1x.png -- 55.89kb -> 32.68kb (41.53%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/triplet_loss.png -- 14.70kb -> 8.63kb (41.26%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/leaky_relu.png -- 239.64kb -> 142.08kb (40.71%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/original_forbenius_norm.png -- 2.40kb -> 1.45kb (39.55%) /Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_decompost.png -- 4.23kb -> 2.63kb (37.8%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/CycleGAN_loss.png -- 139.58kb -> 87.27kb (37.48%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/CycleGAN_loss.png -- 139.58kb -> 87.27kb (37.48%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/denoising.png -- 34.70kb -> 21.73kb (37.36%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cyclegan_generator_ex.png -- 151.93kb -> 95.25kb (37.31%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cyclegan_generator_ex.png -- 151.93kb -> 95.25kb (37.31%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/DAE.png -- 1.46kb -> 0.92kb (37.22%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/discriminator_layers.png -- 104.30kb -> 65.72kb (36.99%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/discriminator_layers.png -- 104.30kb -> 65.72kb (36.99%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/30.eca_1.png -- 5.92kb -> 3.75kb (36.71%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/network_diagram.png -- 25.88kb -> 16.38kb (36.7%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching_ex.png -- 124.59kb -> 79.80kb (35.95%) /Chapter-wise notes/Ch_1_Linear_algebra/images/frob_in_trace.png -- 4.11kb -> 2.69kb (34.69%) /Chapter-wise notes/Ch_1_Linear_algebra/images/norms.png -- 4.17kb -> 2.73kb (34.61%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_network.png -- 22.58kb -> 14.80kb (34.47%) /Chapter-wise notes/Ch_1_Linear_algebra/images/max_norm.png -- 3.45kb -> 2.27kb (34.25%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/12. Dot product.png -- 488.90kb -> 321.92kb (34.15%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching.png -- 23.58kb -> 15.60kb (33.85%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/43.self_information.png -- 3.63kb -> 2.41kb (33.81%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/11. Autocorrect Tool/images/auto-correct.png -- 118.32kb -> 79.16kb (33.09%) /Chapter-wise notes/Ch_1_Linear_algebra/images/l1_norm.png -- 3.04kb -> 2.09kb (31.09%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_2.png -- 207.53kb -> 143.84kb (30.69%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. topic matrix -2.png -- 306.85kb -> 213.49kb (30.42%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a topic - 1.png -- 374.49kb -> 261.79kb (30.09%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/7. topic matrix - 1.png -- 298.55kb -> 208.83kb (30.05%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/14. Sample a topic-3.png -- 497.99kb -> 348.83kb (29.95%) /Chapter-wise notes/Ch_1_Linear_algebra/images/trace_transpose.png -- 3.52kb -> 2.47kb (29.92%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/51.bagging_3.png -- 3.08kb -> 2.16kb (29.82%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Skip-gram model.png -- 746.83kb -> 524.35kb (29.79%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/3. Matrix multiplication .png -- 624.24kb -> 441.60kb (29.26%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/8. Beta Distribution .png -- 252.73kb -> 178.82kb (29.25%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/10. decimal beta distribution .png -- 313.58kb -> 222.46kb (29.06%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/15. sample a topic - 2.png -- 655.19kb -> 464.83kb (29.05%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. document-term matric.png -- 465.81kb -> 330.79kb (28.99%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. matrix.png -- 465.81kb -> 330.79kb (28.99%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/1. C-BOW.png -- 402.19kb -> 285.91kb (28.91%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/siamese_networks.png -- 267.54kb -> 190.57kb (28.77%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/8. NMT with attention.png -- 253.07kb -> 180.34kb (28.74%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_2.png -- 69.64kb -> 49.66kb (28.69%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/2. text cleaning.png -- 295.47kb -> 210.91kb (28.62%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/4. Matrix multiplcation max.png -- 677.38kb -> 483.74kb (28.59%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/12. Dirichlet distribution .png -- 431.57kb -> 308.23kb (28.58%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/6. TF-IDF Matrix.png -- 482.89kb -> 345.33kb (28.49%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/5. BOW-Matrix.png -- 408.77kb -> 292.60kb (28.42%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/20. final topic model.png -- 621.05kb -> 444.78kb (28.38%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/14.equivariance.png -- 14.23kb -> 10.21kb (28.25%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/1. BOW.png -- 166.51kb -> 119.74kb (28.09%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/18. sample a word - 3.png -- 459.65kb -> 332.78kb (27.6%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. combining models.png -- 593.49kb -> 429.75kb (27.59%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a word-1.png -- 370.33kb -> 268.45kb (27.51%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_denoise.png -- 135.98kb -> 98.78kb (27.36%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/17. sample a word -2.png -- 520.15kb -> 378.19kb (27.29%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. document matrix.png -- 243.23kb -> 176.93kb (27.26%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/reviews_ex.png -- 66.56kb -> 48.47kb (27.19%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_1.png -- 151.92kb -> 110.76kb (27.1%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN@0.5x.png -- 15.81kb -> 11.55kb (26.94%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/2. Latent Variables.png -- 355.89kb -> 260.58kb (26.78%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/2. basic encoder-decoder.png -- 311.37kb -> 228.01kb (26.77%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/7. One-Hot Encoding.png -- 297.62kb -> 218.06kb (26.73%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/4. Corpus & Vocab.png -- 296.62kb -> 217.34kb (26.73%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_1.png -- 62.00kb -> 45.53kb (26.56%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/1. Naive Bayes Classifier/images/NLP Pipeline.png -- 423.16kb -> 310.97kb (26.51%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. Topic model.png -- 870.01kb -> 639.92kb (26.45%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_2.png -- 26.67kb -> 19.64kb (26.37%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/training_cycle_ex.png -- 184.52kb -> 136.44kb (26.06%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/training_cycle_ex.png -- 184.52kb -> 136.44kb (26.06%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/forward_pass.png -- 23.42kb -> 17.36kb (25.87%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/1. drawbacks of seq2seq.png -- 241.22kb -> 179.17kb (25.73%) /Chapter-wise notes/Ch_1_Linear_algebra/images/SVD.png -- 2.62kb -> 1.95kb (25.62%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/07.b_computation.png -- 43.40kb -> 32.34kb (25.49%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/3. transformer model.png -- 301.77kb -> 224.86kb (25.49%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/06.f_computation.png -- 31.97kb -> 23.90kb (25.26%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/38. variance.png -- 8.29kb -> 6.20kb (25.22%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_final_algo.png -- 65.62kb -> 49.11kb (25.15%) /Chapter-wise notes/Ch_1_Linear_algebra/images/orthonormal_matrix.png -- 2.91kb -> 2.18kb (25.07%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_3.png -- 65.62kb -> 49.25kb (24.94%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/41.Properties_of_softplus.png -- 23.15kb -> 17.38kb (24.93%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/08.toeplitz_matrix_1d.png -- 12.13kb -> 9.11kb (24.85%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/13. 3D D Distributions.png -- 664.15kb -> 500.93kb (24.58%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/8. Word Embeddings.png -- 245.76kb -> 185.69kb (24.44%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/11. Co-occurance probability.png -- 438.21kb -> 331.56kb (24.34%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/pos_review.png -- 35.03kb -> 26.54kb (24.26%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/3. word alignment.png -- 214.96kb -> 163.13kb (24.11%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Word Embeddings - 1.png -- 212.00kb -> 160.96kb (24.07%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. Bayesian_stats.png -- 5.47kb -> 4.16kb (23.94%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.bagging_4.png -- 9.88kb -> 7.52kb (23.88%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/9. flexible attention.png -- 207.10kb -> 157.83kb (23.79%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/6. Inside attention layer.png -- 284.08kb -> 216.50kb (23.79%) /Chapter-wise notes/Ch_1_Linear_algebra/images/normas_2.png -- 2.37kb -> 1.80kb (23.74%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/10. Word2Vec.png -- 338.60kb -> 260.85kb (22.96%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/50. SSE.png -- 4.09kb -> 3.15kb (22.96%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/neg_review.png -- 45.31kb -> 34.95kb (22.87%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/3. Bigrams.png -- 484.46kb -> 373.73kb (22.86%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/7. Transition Probability.png -- 608.32kb -> 469.48kb (22.82%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/1. basic seq-to-seq model.png -- 242.75kb -> 187.35kb (22.82%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/7. Conditional_prob.png -- 3.79kb -> 2.92kb (22.82%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_block.png -- 33.53kb -> 25.91kb (22.73%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_block.png -- 33.53kb -> 25.91kb (22.73%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/2. look-up table.png -- 416.13kb -> 321.70kb (22.69%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/20. step - 6.png -- 306.69kb -> 237.71kb (22.49%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. MAP.png -- 5.59kb -> 4.34kb (22.3%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/41.bt_computation.png -- 17.84kb -> 13.87kb (22.28%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/4. alignment and attention.png -- 355.30kb -> 276.24kb (22.25%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/19. step - 5.png -- 248.33kb -> 193.12kb (22.23%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/2.NMT basic model.png -- 210.69kb -> 164.08kb (22.12%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/16.l1_objective_function.png -- 3.59kb -> 2.80kb (22.01%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/26. step - 12.png -- 497.00kb -> 387.69kb (21.99%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/40. co_variance_02.png -- 3.43kb -> 2.67kb (21.99%) /Chapter-wise notes/Ch_1_Linear_algebra/images/euclidean_norm.png -- 2.79kb -> 2.18kb (21.8%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/25. step - 11.png -- 483.12kb -> 378.03kb (21.75%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/23. step - 9.png -- 447.99kb -> 350.63kb (21.73%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/04. unfolded_terminologies.png -- 27.05kb -> 21.17kb (21.73%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/22. step - 8.png -- 382.98kb -> 299.78kb (21.73%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/21. step - 7.png -- 334.19kb -> 261.74kb (21.68%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/24. step - 10.png -- 456.51kb -> 358.16kb (21.54%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/18.update_for_momentum.png -- 7.47kb -> 5.86kb (21.54%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/19.first_result_calculus_tools.png -- 3.79kb -> 2.98kb (21.44%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/20.nestrov_momentum_update.png -- 7.78kb -> 6.12kb (21.41%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. unbiased_variance_estimator.png -- 3.89kb -> 3.06kb (21.37%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/15.l1_regularization.png -- 2.62kb -> 2.06kb (21.36%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/18.l1_decomposition_over_params.png -- 5.41kb -> 4.26kb (21.25%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/28.softplus_logit.png -- 6.93kb -> 5.46kb (21.12%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/26.Precision_matrix.png -- 6.92kb -> 5.46kb (21.11%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/27. step - 13.png -- 525.49kb -> 415.01kb (21.02%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/reconstruction_error.png -- 114.79kb -> 90.90kb (20.82%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/reconstruction_error.png -- 114.79kb -> 90.90kb (20.82%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/02.emperical_risk.png -- 7.41kb -> 5.87kb (20.79%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/33.effect_of_constraints.png -- 7.37kb -> 5.84kb (20.78%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cycle_consistency_ex.png -- 371.97kb -> 294.67kb (20.78%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cycle_consistency_ex.png -- 371.97kb -> 294.67kb (20.78%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/33.regularized_newton.png -- 4.77kb -> 3.78kb (20.71%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/XY_season_images.png -- 275.48kb -> 218.42kb (20.71%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/XY_season_images.png -- 275.48kb -> 218.42kb (20.71%) /Chapter-wise code/logo/Pytorch_logo.png -- 19.23kb -> 15.26kb (20.64%) /Chapter-wise code/Code - PyTorch/logo/Pytorch_logo.png -- 19.23kb -> 15.26kb (20.64%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.effect_of_dropout.png -- 66.39kb -> 52.70kb (20.61%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/18. max_likelihood_estimation.png -- 7.39kb -> 5.87kb (20.59%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/25.Multivariate_distribution.png -- 7.47kb -> 5.93kb (20.56%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/15. MSE.png -- 4.88kb -> 3.88kb (20.5%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/15.Covariance.png -- 5.21kb -> 4.15kb (20.39%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/31.taylor_expansion.png -- 6.51kb -> 5.18kb (20.38%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/16. step - 2.png -- 118.75kb -> 94.60kb (20.34%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/19.minimize_function.png -- 4.40kb -> 3.51kb (20.23%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/18.Bernoulli_distribution.png -- 7.27kb -> 5.80kb (20.19%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/03.l2_norm_penalty.png -- 2.28kb -> 1.82kb (20.09%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/39. co_variance_01.png -- 3.65kb -> 2.92kb (20.07%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/23.Precision.png -- 5.29kb -> 4.23kb (20.07%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. standard_error.png -- 5.00kb -> 4.00kb (20.02%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/07. test_error.png -- 3.60kb -> 2.88kb (19.98%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/33. sample_covariance.png -- 2.19kb -> 1.75kb (19.96%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/2. AWS Sagemaker dashboard.png -- 109.80kb -> 87.89kb (19.95%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/05.commutative_lhs.png -- 5.14kb -> 4.12kb (19.93%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/18. step - 4.png -- 171.40kb -> 137.32kb (19.89%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/7. attention visual - 1.png -- 117.12kb -> 93.87kb (19.85%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/6. T5 model.png -- 517.77kb -> 415.00kb (19.85%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/12.Expectation_for_continous_variables.png -- 3.71kb -> 2.97kb (19.77%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/29.Laplace.png -- 4.40kb -> 3.53kb (19.76%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/15. step - 1.png -- 145.59kb -> 116.98kb (19.65%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/32.solution_to_constrained_lagrange.png -- 4.65kb -> 3.74kb (19.64%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/31.Emperical.png -- 3.46kb -> 2.78kb (19.6%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/04.jacobian_matrix.png -- 3.96kb -> 3.19kb (19.53%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/47.polyak_averaging_noncovex.png -- 3.40kb -> 2.74kb (19.49%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/1. AWS console dashboard.png -- 115.76kb -> 93.28kb (19.42%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/38.peturbed_obj_funct.png -- 4.22kb -> 3.40kb (19.39%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/42.Baeyes.png -- 3.24kb -> 2.61kb (19.37%) /Chapter-wise notes/Ch_1_Linear_algebra/images/span.png -- 2.41kb -> 1.94kb (19.36%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/39.Softplus.png -- 1.86kb -> 1.50kb (19.31%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/10.wt_expansion.png -- 4.49kb -> 3.63kb (19.26%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/20. conditional_mle.png -- 5.01kb -> 4.05kb (19.22%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/5. Calculating alignment for NMT model.png -- 576.54kb -> 465.75kb (19.22%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/9.Indipendence_Rule.png -- 4.50kb -> 3.63kb (19.17%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/16.non_linear_model.png -- 5.00kb -> 4.04kb (19.14%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/20.second_result_calculus_tools.png -- 4.72kb -> 3.82kb (19.11%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/02.MSE.png -- 3.68kb -> 2.98kb (19.01%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/18.optimization_problem.png -- 4.84kb -> 3.92kb (18.98%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/04.2-D-cnn.png -- 9.38kb -> 7.61kb (18.84%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/5. Emission Probability.png -- 379.97kb -> 308.89kb (18.71%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/12. bias.png -- 2.28kb -> 1.85kb (18.69%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/19. max_lik_est_expect.png -- 4.45kb -> 3.62kb (18.63%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.stable_softmax.png -- 4.98kb -> 4.05kb (18.62%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/3.jpd_1.png -- 2.15kb -> 1.75kb (18.6%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/06.commutative_rhs.png -- 4.72kb -> 3.85kb (18.55%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/24.linear_approach_to_bernoulli.png -- 5.20kb -> 4.24kb (18.52%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/17. step - 3.png -- 148.35kb -> 120.91kb (18.5%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/14. with teacher forcing.png -- 326.48kb -> 266.17kb (18.47%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/22.Gaussian_distribution.png -- 5.39kb -> 4.41kb (18.24%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/32.update_rule_newton.png -- 2.96kb -> 2.42kb (18.17%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/01.cost_function_for_entire_data_set.png -- 4.34kb -> 3.56kb (18.11%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/5. positional encoding.png -- 211.50kb -> 173.58kb (17.93%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/07.cross_correlation.png -- 4.71kb -> 3.86kb (17.93%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/11.l2_effect_of_weight_decay.png -- 4.60kb -> 3.78kb (17.91%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/6.Marginal_prob_continous.png -- 2.56kb -> 2.10kb (17.8%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/03.vectorized_chain_rule.png -- 3.06kb -> 2.52kb (17.71%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.linear_output.png -- 2.32kb -> 1.91kb (17.68%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/01.function_composition.png -- 2.77kb -> 2.28kb (17.64%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_example.png -- 9.04kb -> 7.45kb (17.61%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/25. linear_regression.png -- 2.44kb -> 2.01kb (17.51%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/02.function_chain_rule.png -- 3.71kb -> 3.06kb (17.4%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/39.leaky_relu.png -- 3.47kb -> 2.87kb (17.22%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.am_pd_dropout.png -- 3.39kb -> 2.81kb (17.08%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/28. BLEU Score Calculation.png -- 408.23kb -> 338.55kb (17.07%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/28. Kernels.png -- 3.26kb -> 2.70kb (17.06%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/06.mse_linear_transformations.png -- 4.94kb -> 4.10kb (16.96%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/24.Standard_Normal_Distribution.png -- 25.94kb -> 21.55kb (16.9%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/34.maximization_goal.png -- 4.34kb -> 3.61kb (16.87%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/11.sgd_convergence.png -- 4.45kb -> 3.70kb (16.86%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/09.l2_quadratic_approximation.png -- 4.21kb -> 3.50kb (16.78%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/36.Sigmoid_function.png -- 2.24kb -> 1.86kb (16.75%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/13.Rules_of_expectation.png -- 4.13kb -> 3.44kb (16.74%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.am_pd_bagging.png -- 3.36kb -> 2.80kb (16.73%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/10. data in NMT.png -- 181.07kb -> 150.80kb (16.71%) /Chapter-wise notes/Ch_1_Linear_algebra/images/orthogonal_matrix.png -- 2.28kb -> 1.90kb (16.69%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/17.cross_entropy.png -- 4.97kb -> 4.14kb (16.68%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/13. No teacher forcing.png -- 334.82kb -> 279.04kb (16.66%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/24.traditional_convolution.png -- 48.38kb -> 40.32kb (16.65%) /Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_vector.png -- 1.85kb -> 1.54kb (16.6%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/25.sigmoid_bernoulli.png -- 2.54kb -> 2.12kb (16.58%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/29.softplus.png -- 3.18kb -> 2.66kb (16.57%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/26. logistic_regression.png -- 2.48kb -> 2.07kb (16.53%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/15.relu_graph.png -- 9.56kb -> 7.98kb (16.47%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/11. NMT setup-english.png -- 552.26kb -> 461.51kb (16.43%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/02.chain_rul.png -- 2.74kb -> 2.29kb (16.41%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/8.Chain_Rule.png -- 4.54kb -> 3.80kb (16.39%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/40.conjugates.png -- 1.89kb -> 1.58kb (16.36%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/10.Conditional_Indipendence.png -- 5.04kb -> 4.22kb (16.34%) /Chapter-wise code/Code - PyTorch/images/install_pytorch.png -- 23.96kb -> 20.05kb (16.3%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/14.Variance.png -- 3.20kb -> 2.68kb (16.27%) /Chapter-wise notes/Ch_1_Linear_algebra/images/diag_matrix_2.png -- 1.76kb -> 1.47kb (16.27%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/38.Softplus_function.png -- 2.55kb -> 2.14kb (16.2%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/12.decomposition_of_hessian_matrix.png -- 9.18kb -> 7.69kb (16.19%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/10.l2_approximaton_minimal.png -- 3.16kb -> 2.65kb (16.09%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/11.Expectation.png -- 3.03kb -> 2.54kb (16.08%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/04.ill_conditioning.png -- 2.16kb -> 1.81kb (15.99%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/4. multi-head attention.png -- 233.07kb -> 195.81kb (15.99%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/05.non_linear_function.png -- 3.67kb -> 3.08kb (15.98%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/03.1-D-cnn.png -- 7.17kb -> 6.02kb (15.96%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/30.Dirac_delta.png -- 1.88kb -> 1.58kb (15.93%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/36.congugate_solution.png -- 2.91kb -> 2.45kb (15.86%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/41.maxout_units.png -- 3.12kb -> 2.62kb (15.83%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/35.obj_function_without_noise.png -- 2.95kb -> 2.48kb (15.78%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. asymptotically_unbiased.png -- 2.47kb -> 2.08kb (15.78%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/48.supervised_pretraining.png -- 83.39kb -> 70.27kb (15.74%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/40.param_relu.png -- 3.90kb -> 3.29kb (15.71%) /Chapter-wise notes/Ch_1_Linear_algebra/images/transpose.png -- 3.23kb -> 2.72kb (15.68%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/31.softmax_fucntion.png -- 15.39kb -> 12.98kb (15.67%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/23.tiled_convolution.png -- 65.05kb -> 54.88kb (15.63%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/8. Sentence generation.png -- 305.21kb -> 257.75kb (15.55%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/21. Parameters_controlling_normal_distribution.png -- 2.38kb -> 2.01kb (15.53%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/29. Kernels_2.png -- 2.82kb -> 2.39kb (15.34%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.complete_linear_xor.png -- 4.47kb -> 3.78kb (15.33%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/32.Multinouli_distribution.png -- 3.02kb -> 2.56kb (15.16%) /Chapter-wise notes/Ch_1_Linear_algebra/images/diagnol_matrix.png -- 1.72kb -> 1.46kb (15.12%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/12. NMT setup - german.png -- 685.37kb -> 582.14kb (15.06%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/7. running notebook.png -- 60.06kb -> 51.08kb (14.95%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/08.linear_hidden.png -- 2.25kb -> 1.92kb (14.88%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/12.learning_rate_decay.png -- 2.00kb -> 1.70kb (14.88%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/21.Gaussian_distribution.png -- 2.77kb -> 2.36kb (14.78%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/16. relationship_graph.png -- 27.69kb -> 23.60kb (14.77%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/07.l2_weight_update_3.png -- 3.28kb -> 2.80kb (14.74%) /Chapter-wise code/Code - PyTorch/images/activating_gpu_2.png -- 28.01kb -> 23.91kb (14.65%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/25.computation.png -- 38.01kb -> 32.48kb (14.54%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/30. dot_product.png -- 1.91kb -> 1.63kb (14.53%) /Chapter-wise notes/Ch_1_Linear_algebra/images/mpr.png -- 1.73kb -> 1.48kb (14.42%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charseq.jpeg -- 82.79kb -> 70.88kb (14.39%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/5. TF-IDF.png -- 187.09kb -> 160.23kb (14.36%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/43.Effect_of_depth_on_accuracy.png -- 65.94kb -> 56.48kb (14.35%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/29.lagrange_with_constrains.png -- 4.67kb -> 4.01kb (14.29%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/14.relu.png -- 2.47kb -> 2.12kb (14.24%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/1. pos tagging.png -- 137.33kb -> 117.78kb (14.24%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/29. ROUGE Score Calculation.png -- 292.32kb -> 250.87kb (14.18%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/36.peturbation.png -- 2.24kb -> 1.92kb (14.17%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/general_rule.png -- 16.95kb -> 14.55kb (14.14%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/06.l2_weight_update_2.png -- 3.18kb -> 2.73kb (14.12%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/4.pdf_interval.png -- 1.78kb -> 1.53kb (14.08%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/33.conditions.png -- 2.59kb -> 2.23kb (14.03%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/08.jacobian_matrix.png -- 3.30kb -> 2.84kb (14.01%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/17. consistency.png -- 1.85kb -> 1.59kb (14.01%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/5.Marginal_prob.png -- 3.06kb -> 2.63kb (14%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/26.structured_outputs.png -- 60.36kb -> 51.95kb (13.93%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/36.ReLU_generalization.png -- 3.48kb -> 3.00kb (13.92%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_pipeline.png -- 192.15kb -> 165.71kb (13.76%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/11.linear_network.png -- 2.22kb -> 1.92kb (13.7%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/35.saturation_condition_01.png -- 1.98kb -> 1.71kb (13.69%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/11. function_estimator.png -- 1.60kb -> 1.38kb (13.66%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/6. Hidden Markov Model.png -- 399.13kb -> 344.96kb (13.57%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/13.relu_applied.png -- 2.41kb -> 2.09kb (13.35%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/07.linear_model.png -- 2.55kb -> 2.21kb (13.31%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/default_initialization.png -- 16.32kb -> 14.16kb (13.25%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.prob_dist.png -- 1.80kb -> 1.56kb (13.17%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/22. data_likelihood.png -- 2.26kb -> 1.97kb (13.03%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/27.Exponential_Distribution.png -- 2.67kb -> 2.33kb (13.03%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/17.l1_gradient.png -- 3.66kb -> 3.18kb (12.98%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/35.congugate_directions.png -- 61.52kb -> 53.54kb (12.98%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/32. ith-example.png -- 1.66kb -> 1.44kb (12.85%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_50.png -- 85.95kb -> 74.96kb (12.79%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_50.png -- 85.95kb -> 74.96kb (12.79%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/2.jpd_2.png -- 1.63kb -> 1.42kb (12.77%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/42.tanh.png -- 2.59kb -> 2.26kb (12.75%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/4. ET probabilities.png -- 204.76kb -> 178.87kb (12.64%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/04. MSE-train.png -- 2.07kb -> 1.81kb (12.57%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/09.circulant_matrix.png -- 20.91kb -> 18.28kb (12.57%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/06. linear_regression.png -- 1.51kb -> 1.33kb (12.39%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. bias_of_variance_of_gaussian_distribution.png -- 1.57kb -> 1.38kb (12.35%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_1.png -- 24.69kb -> 21.67kb (12.24%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/37. eigen_vectors.png -- 3.19kb -> 2.81kb (12.08%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.ill_conditioing_in_taylor_series.png -- 2.80kb -> 2.46kb (11.93%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/08. Error_graph.png -- 25.38kb -> 22.35kb (11.92%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/22.unshared_convolution.png -- 38.47kb -> 33.89kb (11.91%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/13.eigen_decomposition.png -- 24.93kb -> 21.97kb (11.88%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/1.uniform_distribution.png -- 1.65kb -> 1.46kb (11.83%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/08.l2_minimum_training_cost.png -- 2.30kb -> 2.03kb (11.67%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/12.sparse_connections.png -- 108.77kb -> 96.09kb (11.65%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/16.Covariance_matrix.png -- 2.60kb -> 2.30kb (11.6%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/normal_vs_general.png -- 22.96kb -> 20.30kb (11.6%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/05. Optimum_weight.png -- 4.28kb -> 3.79kb (11.42%) /Chapter-wise notes/Ch_1_Linear_algebra/images/unit_vector.png -- 1.47kb -> 1.30kb (11.33%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/34.prior_probability.png -- 1.38kb -> 1.22kb (11.27%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/uniform_weights.png -- 18.88kb -> 16.77kb (11.19%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/31. kernel_predictions.png -- 2.97kb -> 2.64kb (11.07%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/mini_batch_1.png -- 43.84kb -> 38.99kb (11.07%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/10. point_estimator.png -- 2.56kb -> 2.28kb (11.05%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/zeros_vs_ones.png -- 16.53kb -> 14.70kb (11.04%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/38.active_relu_condition_2.png -- 1.38kb -> 1.23kb (10.93%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/61.effect_of_dataset_size.png -- 35.95kb -> 32.02kb (10.92%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/41.multi_task_learning.png -- 31.98kb -> 28.52kb (10.84%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/40.Softplus_graph.png -- 9.85kb -> 8.81kb (10.5%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/33.Gaussian_mixture.png -- 1.37kb -> 1.23kb (10.47%) /Chapter-wise code/Code - PyTorch/1. Intro to PyTorch/images/jacobian_product.png -- 38.68kb -> 34.67kb (10.39%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/37.Sigmoid_graph.png -- 10.17kb -> 9.15kb (9.99%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/03. training_set.png -- 2.03kb -> 1.83kb (9.91%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/43.memory_space_BFGS.png -- 1.30kb -> 1.18kb (9.36%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/05.graphs_and_chain_rule.png -- 30.35kb -> 27.53kb (9.3%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/21.case_1_2.png -- 1.25kb -> 1.14kb (9.18%) /Chapter-wise notes/Ch_1_Linear_algebra/images/symmetric_matrix.png -- 1.50kb -> 1.36kb (9.14%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/26.first_sigmoid_layer.png -- 1.45kb -> 1.32kb (9.1%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/17.Covariance_matrix_2.png -- 2.28kb -> 2.07kb (9.05%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.linear_approach_for_softmax.png -- 1.63kb -> 1.49kb (8.97%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/22.case_2_2.png -- 1.24kb -> 1.13kb (8.77%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.issue_with_local_minima.png -- 46.35kb -> 42.38kb (8.56%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/08.gradient_clipping.png -- 23.83kb -> 21.81kb (8.46%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/01.computational_graphs.png -- 66.37kb -> 60.77kb (8.44%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/29.sepearable_kernel.png -- 1.44kb -> 1.32kb (8.36%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/45.param_tying_01.png -- 11.52kb -> 10.56kb (8.3%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/21. examples.png -- 1.65kb -> 1.51kb (8.3%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/horse2zebra.jpg -- 26.52kb -> 24.33kb (8.26%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/horse2zebra.jpg -- 26.52kb -> 24.33kb (8.26%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/34.computational_complex_newton.png -- 1.32kb -> 1.22kb (7.98%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/15.gradient.png -- 15.64kb -> 14.40kb (7.92%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/28.gen_lag_constrains.png -- 15.37kb -> 14.16kb (7.85%) /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_097.png -- 2.70kb -> 2.49kb (7.77%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/22.linear_units.png -- 1.69kb -> 1.56kb (7.75%) /Chapter-wise notes/Ch_1_Linear_algebra/images/properties_of_norm.png -- 14.12kb -> 13.04kb (7.63%) /Deep Learning Nanodegree Certificate/images/final_completion_certificate.png -- 142.19kb -> 131.39kb (7.6%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/28.traditional_kernel.png -- 1.22kb -> 1.13kb (7.38%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/training_loss.png -- 27.74kb -> 25.72kb (7.29%) /Chapter-wise notes/Ch_1_Linear_algebra/images/linear_combination'.png -- 2.24kb -> 2.08kb (7.28%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/46.comparison_bw_bn_nonbn.png -- 145.92kb -> 135.40kb (7.21%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/22.grad_update_for_adagrad.png -- 15.15kb -> 14.07kb (7.16%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/09.linear_deep_network.png -- 22.28kb -> 20.69kb (7.16%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/5. create IAM role.png -- 85.44kb -> 79.39kb (7.08%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/25.rmsprop_gradient.png -- 15.29kb -> 14.22kb (7.03%) /images/deep-learning-book-goodfellow-cover.jpg -- 181.02kb -> 168.33kb (7.01%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/44.Shannon_entropy.png -- 7.54kb -> 7.03kb (6.82%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.eight_detector.png -- 101.06kb -> 94.21kb (6.78%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_embeddings.png -- 34.16kb -> 31.85kb (6.77%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/6. notebook instance settings.png -- 97.64kb -> 91.08kb (6.72%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/49.Directed_graphs.png -- 6.02kb -> 5.62kb (6.6%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/9. gamma function.png -- 30.23kb -> 28.27kb (6.48%) /Chapter-wise notes/Ch_1_Linear_algebra/images/identity_matrix.png -- 2.11kb -> 1.98kb (6.39%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/27.update_rmsprop.png -- 7.20kb -> 6.75kb (6.27%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/23.accumulate_adagrad.png -- 20.69kb -> 19.41kb (6.15%) /Chapter-wise notes/Ch_1_Linear_algebra/images/trace.png -- 4.16kb -> 3.91kb (6.1%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/30.final_update_adam.png -- 5.90kb -> 5.56kb (5.74%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/52.Normalizing_constant.png -- 6.07kb -> 5.73kb (5.71%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/27.single_vs_multichanel.png -- 46.17kb -> 43.57kb (5.65%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/04.hidden_layer.png -- 1.69kb -> 1.60kb (5.44%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/27.sigmoidal_transformation_of_logit.png -- 53.02kb -> 50.24kb (5.25%) /Chapter-wise code/Code - PyTorch/images/activating_gpu.png -- 49.22kb -> 46.67kb (5.19%) /Chapter-wise code/images/ben_passmore.jpg -- 318.59kb -> 302.16kb (5.16%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/26.accumulate_rmsprop.png -- 9.40kb -> 8.92kb (5.11%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.dropout_modelling.png -- 117.26kb -> 111.39kb (5.01%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/data/15. rnn_classifier.png -- 10.75kb -> 10.22kb (4.96%) /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_096.png -- 1.96kb -> 1.86kb (4.93%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/47.Cross_entropy.png -- 6.12kb -> 5.83kb (4.77%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/45.KL_divergence.png -- 13.94kb -> 13.31kb (4.54%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.updated_convolution_operation.png -- 24.69kb -> 23.57kb (4.53%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/19.accumulate_velocity.png -- 4.56kb -> 4.36kb (4.45%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/09. weight_decay.png -- 5.63kb -> 5.38kb (4.41%) /Chapter-wise notes/Ch_1_Linear_algebra/images/before_after_ev.png -- 41.55kb -> 39.72kb (4.4%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/54.Undirected_graph_2.png -- 8.92kb -> 8.53kb (4.38%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generator_discriminator_loss.png -- 19.07kb -> 18.29kb (4.13%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/45.batch_transformation.png -- 21.76kb -> 20.91kb (3.9%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/28.momentum_update_adam.png -- 12.73kb -> 12.23kb (3.86%) /Chapter-wise code/images/octopus.jpg -- 90.07kb -> 86.62kb (3.83%) /Chapter-wise notes/Ch_1_Linear_algebra/images/trace_comm.png -- 7.81kb -> 7.51kb (3.81%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/46.param_tying_02.png -- 9.02kb -> 8.70kb (3.49%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/47.param_tying_03.png -- 6.69kb -> 6.46kb (3.47%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/16.update.png -- 4.05kb -> 3.92kb (3.44%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/55.OOB_2.png -- 11.06kb -> 10.68kb (3.37%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.dropout_modelling_00'.png -- 123.91kb -> 119.80kb (3.32%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/split_2_points.png -- 57.26kb -> 55.37kb (3.31%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/46. softmax_classifictaion_problem.png -- 62.86kb -> 60.78kb (3.3%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/37.peturbed_model.png -- 1.36kb -> 1.32kb (3.29%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/24.update_adagrad.png -- 13.14kb -> 12.71kb (3.21%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/29.bias_update_adam.png -- 27.79kb -> 26.90kb (3.2%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/43.Hard_MTL.png -- 33.13kb -> 32.11kb (3.07%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/3. zero notebook instances.png -- 53.90kb -> 52.34kb (2.9%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/11.doubly_circulant_matrix.png -- 85.16kb -> 82.71kb (2.88%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/50.bagging_2.png -- 12.58kb -> 12.22kb (2.84%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/4. name your notebook.png -- 105.44kb -> 102.46kb (2.83%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/05.l2_weight_update.png -- 3.50kb -> 3.41kb (2.81%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/06.saddle_point.png -- 71.64kb -> 69.68kb (2.74%) /Chapter-wise notes/Ch_1_Linear_algebra/images/mpr_formula.png -- 5.24kb -> 5.11kb (2.48%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/46.KL_properties.png -- 5.40kb -> 5.27kb (2.39%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.convolution_operation.png -- 21.34kb -> 20.84kb (2.33%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/regression.png -- 1.14kb -> 1.12kb (1.8%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/53.Undirected_graph.png -- 18.18kb -> 17.88kb (1.66%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/48.Structured_probability.png -- 6.30kb -> 6.20kb (1.58%) /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_098.png -- 1.69kb -> 1.66kb (1.5%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_l2_regularization.png -- 90.91kb -> 89.72kb (1.31%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/10.curculant_matrix.png -- 64.44kb -> 63.63kb (1.27%) /Chapter-wise notes/Ch_1_Linear_algebra/images/dot_product.png -- 4.47kb -> 4.42kb (1.2%) /Chapter-wise code/images/hockney.jpg -- 18.31kb -> 18.11kb (1.1%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/53.bagging_examples.png -- 35.56kb -> 35.20kb (1.01%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/50.Directed_graph_2.png -- 19.66kb -> 19.50kb (0.82%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_vs_l2.png -- 64.39kb -> 63.95kb (0.68%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/48.param_tying_04.png -- 50.73kb -> 50.39kb (0.67%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/13.comparison_sparse_interactions.png -- 155.61kb -> 154.69kb (0.59%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/sample-004000-summer2winter.png -- 934.39kb -> 930.58kb (0.41%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/sample-004000-summer2winter.png -- 934.39kb -> 930.58kb (0.41%) /Chapter-wise code/images/target.png -- 366.91kb -> 365.87kb (0.28%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/51.Directed_graph_3.png -- 9.33kb -> 9.30kb (0.28%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/summer_to_winter.png -- 527.83kb -> 526.52kb (0.25%) /Chapter-wise code/images/target_octopus.png -- 233.01kb -> 232.43kb (0.25%) /Chapter-wise code/images/style_purva.png -- 349.62kb -> 348.80kb (0.23%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/winter_to_summer.png -- 504.69kb -> 503.56kb (0.23%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/03.batch_vs_minibatch.png -- 305.47kb -> 305.06kb (0.13%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/17. effect_of_ratio.png -- 446.70kb -> 446.22kb (0.11%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth_2.png -- 121.01kb -> 120.89kb (0.1%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/39.noise_robustness.png -- 238.78kb -> 238.54kb (0.1%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/07. lstm_basics_3.png -- 108.09kb -> 107.99kb (0.09%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/lstm_rnn_architecture.png -- 94.24kb -> 94.16kb (0.09%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/02. RNN.png -- 129.56kb -> 129.45kb (0.08%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/03. CNNs'.png -- 120.82kb -> 120.73kb (0.07%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/05. lstm_basics_1.png -- 76.29kb -> 76.24kb (0.06%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/59. grad_desc.png -- 85.23kb -> 85.18kb (0.06%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/55. mount_err_5.png -- 66.65kb -> 66.61kb (0.06%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/02.content_and_style_image.png -- 199.24kb -> 199.13kb (0.06%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/02. MLP.png -- 118.47kb -> 118.41kb (0.05%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/machine_learning_workflow.png -- 72.92kb -> 72.89kb (0.05%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generated_faces.png -- 111.66kb -> 111.62kb (0.04%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/momentum.png -- 98.54kb -> 98.51kb (0.03%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/44.param_sharing_for_CNN.png -- 260.12kb -> 260.03kb (0.03%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/53. mount_err_3.png -- 59.60kb -> 59.58kb (0.03%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/nn_over_and_under_fitting.png -- 175.95kb -> 175.90kb (0.03%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth.png -- 101.60kb -> 101.57kb (0.03%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/predicts_split_2_points.png -- 141.95kb -> 141.92kb (0.02%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/14. remember_gate.png -- 92.04kb -> 92.02kb (0.01%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/34.data_augmentation.png -- 194.98kb -> 194.96kb (0.01%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/06. lstm_basics_2.png -- 97.61kb -> 97.61kb (0%) Signed-off-by: ImgBotApp <ImgBotHelp@gmail.com>
- Loading branch information