[TOC]
Once for all is an one-stage one-shot Neural Architecture Search Algorithm, which mainly support ImageNet Datasets.
In this repository, most codes are from https://github.com/mit-han-lab/once-for-all.
We mainly focus on training OFA(Once for all) on CIFAR10 dataset.
What we do:
- Support CIFAR10 dataloader
- Modify training codes
- Support Single GPU Training
- Rewrite code about Max Teachernet Training
- Release TeacherNet weight(Coming soon..)
mpirun -np 32 -H <server1_ip>:8,<server2_ip>:8,<server3_ip>:8,<server4_ip>:8 \
-bind-to none -map-by slot \
-x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH \
python train_ofa_net.py
or
horovodrun -np 32 -H <server1_ip>:8,<server2_ip>:8,<server3_ip>:8,<server4_ip>:8 \
python train_ofa_net.py
- Python 3.6+
- Pytorch 1.4.0+
- ImageNet Dataset
- Horovod
""" OFA Networks.
Example: ofa_network = ofa_net('ofa_mbv3_d234_e346_k357_w1.0', pretrained=True)
"""
from ofa.model_zoo import ofa_net
ofa_network = ofa_net(net_id, pretrained=True)
# Randomly sample sub-networks from OFA network
ofa_network.sample_active_subnet()
random_subnet = ofa_network.get_active_subnet(preserve_weight=True)
# Manually set the sub-network
ofa_network.set_active_subnet(ks=7, e=6, d=4)
manual_subnet = ofa_network.get_active_subnet(preserve_weight=True)
If the above scripts failed to download, you download it manually from Google Drive and put them under $HOME/.torch/ofa_nets/.
python eval_ofa_net.py --path 'Your path to imagenet' --net ofa_mbv3_d234_e346_k357_w1.0
""" OFA Specialized Networks.
Example: net, image_size = ofa_specialized('flops@595M_top1@80.0_finetune@75', pretrained=True)
"""
from ofa.model_zoo import ofa_specialized
net, image_size = ofa_specialized(net_id, pretrained=True)
If the above scripts failed to download, you download it manually from Google Drive and put them under $HOME/.torch/ofa_specialized/.
python eval_specialized_net.py --path 'Your path to imagent' --net flops@595M_top1@80.0_finetune@75
@inproceedings{
cai2020once,
title={Once for All: Train One Network and Specialize it for Efficient Deployment},
author={Han Cai and Chuang Gan and Tianzhe Wang and Zhekai Zhang and Song Han},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://arxiv.org/pdf/1908.09791.pdf}
}