Implementation of P. Kicki et al., "Fast Kinodynamic Planning on the Constraint Manifold With Deep Neural Networks," in IEEE Transactions on Robotics, vol. 40, pp. 277-297, 2024.
See also:
paper
website
preprint
General
- Tensorflow
pip install tensorflow
- Tensorflow-graphics
pip install tensorflow-graphics
- NumPy
pip install numpy
- Matplotlib
pip install matplotlib
- Pinocchio
sudo apt install ros-noetic-pinocchio
For Air-Hockey hitting
- Nlopt
sudo apt install libnlopt-cxx-dev libnlopt-dev
- Coin-or-CLP
sudo apt install coinor-libclp-dev
For demonstration of motion planning in ROS
For results plotting and statistical analysis
- SciPy ``
- statsmodels
pip install statsmodels
Download data
bash download_datasets.sh
Download pre-trained models
bash download_models.sh
Build python bindings (for Air Hockey hitting only)
bash build.sh
Make an inference of the model on a sample Air Hockey hitting problem
python examples/air_hockey_hitting.py
or moving a vertically oriented heavy object
python examples/heavy_object.py
Run docker container
cd docker && ./run.sh
Run demo
bash demo/demo.sh
@ARTICLE{kicki2024kinodynamic,
author={Kicki, Piotr and Liu, Puze and Tateo, Davide and Bou-Ammar, Haitham and Walas, Krzysztof and Skrzypczyński, Piotr and Peters, Jan},
journal={IEEE Transactions on Robotics},
title={Fast Kinodynamic Planning on the Constraint Manifold With Deep Neural Networks},
year={2024},
volume={40},
number={},
pages={277-297},
doi={10.1109/TRO.2023.3326922}}