Skip to content

Commit

Permalink
test(cytotrace): add test module
Browse files Browse the repository at this point in the history
Signed-off-by: Cameron Smith <cameron.ray.smith@gmail.com>
  • Loading branch information
cameronraysmith committed Aug 19, 2024
1 parent f1628e5 commit 8919b0b
Showing 1 changed file with 134 additions and 2 deletions.
136 changes: 134 additions & 2 deletions src/pyrovelocity/tests/analysis/test_cytotrace.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,139 @@
"""Tests for `pyrovelocity.analysis.cytotrace` module."""


import numpy as np
import pandas as pd
import pytest
from anndata import AnnData
from numpy.testing import assert_array_almost_equal
from scipy.sparse import csr_matrix

from pyrovelocity.analysis import cytotrace


def test_load_cytotrace():
pass
print(cytotrace.__file__)


@pytest.fixture
def small_anndata():
X = csr_matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
obs = pd.DataFrame(index=["cell1", "cell2", "cell3"])
var = pd.DataFrame(index=["gene1", "gene2", "gene3"])
adata = AnnData(X, obs=obs, var=var)
adata.layers["raw"] = X
return adata


def test_compute_similarity2():
O = np.array([[1, 2, 3], [4, 5, 6]])
P = np.array([[1, 2], [3, 4]])
result = cytotrace.compute_similarity2(O, P)
assert result.shape == (2, 3)
assert np.allclose(result.T, np.corrcoef(O.T, P)[:3, 3:], atol=1e-5)


def test_compute_similarity1():
A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
result = cytotrace.compute_similarity1(A)
assert result.shape == (3, 3)
assert np.allclose(result, np.corrcoef(A.T))


def test_compute_gcs():
mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
count = np.array([2, 3, 3])
result = cytotrace.compute_gcs(mat, count, top_n_genes=2)
assert result.shape == (3,)


def test_threshold_and_normalize_similarity_matrix():
sim = np.array(
[
[1.0, 0.8, 0.3, 0.1],
[0.8, 1.0, 0.5, 0.2],
[0.3, 0.5, 1.0, 0.7],
[0.1, 0.2, 0.7, 1.0],
]
)

result = cytotrace.threshold_and_normalize_similarity_matrix(sim)

# check diagonal is zeroed out
assert np.all(np.diag(result) == 0)

# check values below or equal to mean are zeroed out
mean_sim = np.mean(sim)
assert np.all(result[sim <= mean_sim] == 0)

# check non-zero rows are normalized to sum to 1
non_zero_rows = np.where(result.sum(axis=1) > 0)[0]
for row in non_zero_rows:
assert_array_almost_equal(result[row].sum(), 1.0, decimal=6)

# check zero rows remain zero
zero_rows = np.where(result.sum(axis=1) == 0)[0]
assert np.all(result[zero_rows] == 0)

# check the result is sparse (contains zeros)
assert np.sum(result == 0) > 0

# check the result preserves symmetry
if np.allclose(sim, sim.T):
assert np.allclose(result, result.T)

# check stronger similarities are preserved
stronger_similarities = sim > np.mean(sim)
assert np.all(result[stronger_similarities] >= 0)

# check weaker similarities are removed
weaker_similarities = sim <= np.mean(sim)
assert np.all(result[weaker_similarities] == 0)

# check behavior with all-zero input
zero_sim = np.zeros_like(sim)
zero_result = cytotrace.threshold_and_normalize_similarity_matrix(zero_sim)
assert np.all(zero_result == 0)

# check behavior with negative values
neg_sim = np.array([[-1, 0.5], [0.5, -1]])
neg_result = cytotrace.threshold_and_normalize_similarity_matrix(neg_sim)
assert np.all(neg_result >= 0)
assert_array_almost_equal(neg_result, np.array([[0, 1], [1, 0]]))


def test_diffused():
markov = np.array([[0.7, 0.2, 0.1], [0.3, 0.5, 0.2], [0.1, 0.3, 0.6]])
gcs = np.array([1, 2, 3])
result = cytotrace.diffused(markov, gcs)
assert result.shape == gcs.shape


def test_cytotrace_sparse(small_anndata, monkeypatch):
result = cytotrace.cytotrace_sparse(small_anndata, layer="raw")

assert isinstance(result, dict)
assert "CytoTRACE" in result
assert "GCS" in result
assert "cytoGenes" in result

assert "gcs" in small_anndata.obs.columns
assert "cytotrace" in small_anndata.obs.columns
assert "counts" in small_anndata.obs.columns
assert "cytotrace" in small_anndata.var.columns
assert "cytotrace_corrs" in small_anndata.var.columns


def test_cytotrace_sparse_errors():
adata = AnnData(X=np.array([[1, 2], [3, 4]]))
adata.layers["raw"] = adata.X

with pytest.raises(
NotImplementedError,
):
cytotrace.cytotrace_sparse(adata)

# print(cytotrace.__file__)
with pytest.raises(
KeyError,
):
cytotrace.cytotrace_sparse(adata, layer="non_existent")

0 comments on commit 8919b0b

Please sign in to comment.