This project allows for parameterizing your Xunit test methods such that they run multiple times, once for each combination of possible arguments for your test method. You can also limit the number of test cases by using a pairwise strategy, which generally provides good coverage for testing but significantly reduces the test case explosion you might have when you have more than two parameters.
This project is available as a NuGet package
Suppose you have this test method:
[Fact]
public void CheckFileSystem(bool recursive)
{
// verifications here
}
To arrange for your test method to be invoked twice, once for each value of its bool parameter, change the attributes to
[Theory, CombinatorialData]
public void CheckFileSystem(bool recursive)
{
// verifications here
}
The CombinatorialDataAttribute
will supply Xunit with both true
and false
arguments to run the test method with, resulting in two invocations of your
test method with individual results reported for each invocation.
To supply your own values to pass in for each parameter, use the
CombinatorialValuesAttribute
:
[Theory, CombinatorialData]
public void CheckValidAge([CombinatorialValues(5, 18, 21, 25)] int age)
{
// verifications here
}
This will run your test method four times with each of the prescribed values.
Of course it wouldn't be combinatorial without multiple parameters:
[Theory, CombinatorialData]
public void CheckValidAge([CombinatorialValues(5, 18, 21, 25)] int age, bool friendlyOfficer)
{
// This will run with all combinations:
// 5 true
// 18 true
// 21 true
// 25 true
// 5 false
// 18 false
// 21 false
// 25 false
}
Once you have more that two parameters, the number of test cases can grow dramatically in order to cover every possible combination. Consider this test with 3 parameters, each taking just two values:
[Theory, CombinatorialData]
public void CheckValidAge(bool p1, bool p2, bool p3)
{
// Combinatorial generates these 8 test cases:
// false false false
// false false true
// false true false
// false true true
// true false false
// true false true
// true true false
// true true true
}
We already have 8 test cases. With more parameters or more values per parameter the test cases can quickly grow to a very large number. This can cause your test runs to take too long. This level of exhaustive testing is often not necessary as many bugs will show up whenever two parameters are specific values. This is called "pairwise testing" and it generates far fewer test cases than combinatorial testing because it only ensures there is a test case covering every combination of two parameters, and thus can "compress" the test cases by making each test case significantly test more than one pair.
To use pairwise testing, use the PairwiseDataAttribute
instead of the
CombinatorialDataAttribute
:
[Theory, PairwiseData]
public void CheckValidAge(bool p1, bool p2, bool p3)
{
// Pairwise generates these 4 test cases:
// false false false
// false true true
// true false true
// true true false
}
We have cut the number of test cases in half by using pairwise instead of combinatorial. In many cases the test reduction can be much greater. Notice that although the test cases are fewer, you can still find a test case that covers any two parameter values (thus pairwise).
To run a test with a parameter over a range of values, we have
CombinatorialRangeAttribute
to generate tests over intervals of integers.
[Theory, CombinatorialData]
public void CombinatorialCustomRange([CombinatorialRange(0, 5)] int p1, [CombinatorialRange(0, 3, 2)] int p2)
{
// Combinatorial generates these test cases:
// 0 0
// 1 0
// 2 0
// 3 0
// 4 0
// 0 2
// 1 2
// 2 2
// 3 2
// 4 2
}
CombinatorialRangeAttribute
has two distinct constructors.
When supplied with two integers from
and count
, Xunit
will create a test case where the parameter equals from
, and
it will increment the parameter by 1 for count
number of cases.
In the second constructor, CombinatorialRangeAttribute
accepts three integer parameters. In the generated cases, the
parameter value will step up from the first integer to the
second integer, and the third integer specifies the interval of
which to increment.