-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
18 changed files
with
30,827 additions
and
39,907 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,6 +2,9 @@ | |
_* | ||
!_layouts/ | ||
!_includes/ | ||
!_sass/ | ||
!_scripts/ | ||
!_config.yml | ||
# !_config_dev.yml | ||
*.DS_Store | ||
*.Rhistory |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,283 @@ | ||
################################################################################ | ||
## | ||
## <PROJ> College Advising Map | ||
## <FILE> make_data.R | ||
## <AUTH> Benjamin Skinner | ||
## <INIT> September 2017 | ||
## | ||
################################################################################ | ||
|
||
## libraries | ||
libs <- c('tidyverse', 'geojsonio', 'sp', 'rgdal', 'stringr') | ||
lapply(libs, require, character.only = TRUE) | ||
|
||
## paths | ||
ddir <- '../assets/data' | ||
jdir <- '../assets/js' | ||
rdir <- file.path(ddir, '_raw') | ||
|
||
## crosswalk | ||
cw <- read_csv(file.path(ddir, 'stcrosswalk.csv')) | ||
|
||
################################################################################ | ||
## FUNCTIONS | ||
################################################################################ | ||
|
||
## slight modification of stringr::str_to_title | ||
str_to_title_mod <- function(x) { | ||
x <- str_to_title(x) | ||
## Of --> of | ||
x <- gsub(' Of ', ' of ', x, fixed = TRUE) | ||
## And --> and | ||
x <- gsub(' And ', ' and ', x, fixed = TRUE) | ||
## The --> the | ||
x <- gsub(' The ', ' the ', x, fixed = TRUE) | ||
## A --> a | ||
x <- gsub(' A ', ' a ', x, fixed = TRUE) | ||
return(x) | ||
} | ||
|
||
## write dataframe to JS array with no unnecessary whitespace | ||
writeJSArray <- function(df, array_name, vars, outfile) { | ||
|
||
df <- df[,names(df) %in% vars] | ||
## maintain 1 index (JS is zero-index) for sanity | ||
lines <- paste0(array_name,'=[{}') | ||
|
||
for (i in 1:nrow(df)) { | ||
## line <- paste0(array_name, '[', i, ']={') | ||
line <- paste0('{') | ||
for (v in 1:length(vars)) { | ||
if (!is.na(df[i, grep(vars[v], names(df))])) { | ||
if (v == 1) { | ||
} else { | ||
line <- paste0(line,',') | ||
} | ||
if (class(df[[vars[v]]]) == 'character') { | ||
line <- paste0(line, vars[v], ':"', | ||
df[i, grepl(vars[v], names(df))], '"') | ||
} else { | ||
line <- paste0(line, vars[v], ':', | ||
df[i, grepl(vars[v], names(df))]) | ||
} | ||
|
||
} | ||
} | ||
line <- paste0(line, '}') | ||
if (i == nrow(df)) { line <- paste0(line, '];') } | ||
lines <- c(lines,line) | ||
} | ||
writeLines(paste(lines, collapse = ','), outfile) | ||
} | ||
|
||
################################################################################ | ||
## CLEAN DATA | ||
################################################################################ | ||
|
||
## ------------------------------------- | ||
## COLLEGE | ||
## ------------------------------------- | ||
|
||
## read in school data | ||
college <- read_csv(file.path(rdir, 'HD2015.zip')) %>% | ||
setNames(tolower(names(.))) %>% | ||
select(instnm, fips, sector, lon = longitud, lat = latitude) %>% | ||
filter(sector %in% c(1,2,4,5), | ||
fips %in% cw$stfips) %>% | ||
mutate(lon = as.numeric(lon), | ||
lat = as.numeric(lat), | ||
cat = ifelse(sector == 1, 5, | ||
ifelse(sector == 2, 6, | ||
ifelse(sector == 4, 7, | ||
ifelse(sector == 5, 8, 0))))) %>% | ||
select(-sector) %>% | ||
filter(!is.na(lon), | ||
!is.na(lat)) | ||
|
||
## ------------------------------------- | ||
## HIGH SCHOOL | ||
## ------------------------------------- | ||
|
||
## read in school data | ||
hs <- read_csv(file.path(rdir, 'school_level_clean_2.csv')) %>% | ||
setNames(tolower(names(.))) %>% | ||
select(nces_id, | ||
nces_dist_id, | ||
instnm = school_name, | ||
fips = school_state_fips, | ||
lon = school_longitude, | ||
lat = school_latitude, | ||
enroltot = school_enrollment_total, | ||
frlpct = school_frl_pct, | ||
csr = school_student_counselor_ratio) %>% | ||
mutate(fips = as.integer(fips)) %>% | ||
filter(fips %in% cw$stfips) %>% | ||
mutate(instnm = str_to_title_mod(instnm), | ||
lon = as.numeric(lon), | ||
lat = as.numeric(lat)) %>% | ||
filter(!is.na(lon), | ||
!is.na(lat)) | ||
|
||
hs_imp <- hs %>% | ||
group_by(fips) %>% | ||
summarise(csr_mean = mean(csr, na.rm = TRUE)) %>% | ||
ungroup() | ||
|
||
## advising programs at school level | ||
advise_tmp <- read_csv(file.path(rdir, 'advising_program_school_clean.csv')) %>% | ||
setNames(tolower(names(.))) %>% | ||
mutate(trio_subprogram = ifelse(trio_subprogram == 'N/A', NA, | ||
trio_subprogram)) %>% | ||
## need to make wide | ||
arrange(nces_id) %>% | ||
group_by(nces_id) %>% | ||
mutate(count = seq(n())) %>% | ||
rename(org_1 = organization_name, | ||
div_1 = division_name, | ||
tri_1 = trio_subprogram, | ||
web_1 = website) %>% | ||
mutate(org_2 = ifelse(count == 2, org_1, NA), | ||
div_2 = ifelse(count == 2, div_1, NA), | ||
tri_2 = ifelse(count == 2, tri_1, NA), | ||
web_2 = ifelse(count == 2, web_1, NA), | ||
org_3 = ifelse(count == 3, org_1, NA), | ||
div_3 = ifelse(count == 3, org_1, NA), | ||
tri_3 = ifelse(count == 3, org_1, NA), | ||
web_3 = ifelse(count == 3, org_1, NA), | ||
org_4 = ifelse(count == 4, org_1, NA), | ||
div_4 = ifelse(count == 4, org_1, NA), | ||
tri_4 = ifelse(count == 4, org_1, NA), | ||
web_4 = ifelse(count == 4, org_1, NA), | ||
org_5 = ifelse(count == 5, org_1, NA), | ||
div_5 = ifelse(count == 5, org_1, NA), | ||
tri_5 = ifelse(count == 5, org_1, NA), | ||
web_5 = ifelse(count == 5, org_1, NA), | ||
org_6 = ifelse(count == 6, org_1, NA), | ||
div_6 = ifelse(count == 6, org_1, NA), | ||
tri_6 = ifelse(count == 6, org_1, NA), | ||
web_6 = ifelse(count == 6, org_1, NA), | ||
org_7 = ifelse(count == 7, org_1, NA), | ||
div_7 = ifelse(count == 7, org_1, NA), | ||
tri_7 = ifelse(count == 7, org_1, NA), | ||
web_7 = ifelse(count == 7, org_1, NA), | ||
org_8 = ifelse(count == 8, org_1, NA), | ||
div_8 = ifelse(count == 8, org_1, NA), | ||
tri_8 = ifelse(count == 8, org_1, NA), | ||
web_8 = ifelse(count == 8, org_1, NA)) | ||
|
||
advise <- advise_tmp %>% | ||
filter(count == 1) %>% | ||
select(nces_id, ends_with('_1')) %>% | ||
left_join(advise_tmp %>% | ||
filter(count == 2) %>% | ||
select(nces_id, ends_with('_2')), by = 'nces_id') %>% | ||
left_join(advise_tmp %>% | ||
filter(count == 3) %>% | ||
select(nces_id, ends_with('_3')), by = 'nces_id') %>% | ||
left_join(advise_tmp %>% | ||
filter(count == 4) %>% | ||
select(nces_id, ends_with('_4')), by = 'nces_id') %>% | ||
left_join(advise_tmp %>% | ||
filter(count == 5) %>% | ||
select(nces_id, ends_with('_5')), by = 'nces_id') %>% | ||
left_join(advise_tmp %>% | ||
filter(count == 6) %>% | ||
select(nces_id, ends_with('_6')), by = 'nces_id') %>% | ||
left_join(advise_tmp %>% | ||
filter(count == 7) %>% | ||
select(nces_id, ends_with('_7')), by = 'nces_id') %>% | ||
left_join(advise_tmp %>% | ||
filter(count == 8) %>% | ||
select(nces_id, ends_with('_8')), by = 'nces_id') %>% | ||
unite(advise_org, starts_with('org_'), sep = '|') %>% | ||
mutate(advise_org = gsub('NA', '', advise_org)) %>% | ||
unite(advise_div, starts_with('div_'), sep = '|') %>% | ||
mutate(advise_div = gsub('NA', '', advise_div)) %>% | ||
unite(advise_tri, starts_with('tri_'), sep = '|') %>% | ||
mutate(advise_tri = gsub('NA', '', advise_tri)) %>% | ||
unite(advise_web, starts_with('web_'), sep = '|') %>% | ||
mutate(advise_web = gsub('NA', '', advise_web)) | ||
|
||
## merge into high school data | ||
hs <- hs %>% | ||
## left_join(dist) %>% | ||
left_join(advise) %>% | ||
left_join(hs_imp) %>% | ||
select(-starts_with('nces_')) %>% | ||
mutate(csr_flag = as.integer(is.na(csr)), | ||
csr = ifelse(is.na(csr), csr_mean, csr), | ||
cat = ifelse(!is.na(advise_org) & !is.na(csr), 1, | ||
ifelse(is.na(advise_org) & !is.na(csr), 2, | ||
ifelse(!is.na(advise_org) & is.na(csr), 3, | ||
ifelse(is.na(advise_org) & is.na(csr), 4, 0))))) | ||
|
||
## ------------------------------------- | ||
## COMMUNITY | ||
## ------------------------------------- | ||
|
||
## advising programs at school level | ||
community <- read_csv(file.path(rdir, 'advising_program_community_clean.csv')) %>% | ||
setNames(tolower(names(.))) %>% | ||
rename(advise_org = organization_name, | ||
advise_div = division_name, | ||
advise_web = website) | ||
|
||
## get zipcode geo | ||
zipgeo <- read_tsv(file.path(rdir, '2016_Gaz_zcta_national.zip')) %>% | ||
setNames(tolower(names(.))) %>% | ||
mutate(zip = geoid, | ||
lon = intptlong, | ||
lat = intptlat) %>% | ||
select(zip, lon, lat) | ||
|
||
## merge to community | ||
community <- community %>% | ||
left_join(zipgeo) %>% | ||
mutate(cat = 9) %>% | ||
## need to fix! | ||
drop_na(lon) | ||
|
||
################################################################################ | ||
## COMBINE & WRITE | ||
################################################################################ | ||
|
||
## bind | ||
df <- bind_rows(college, hs, community) %>% | ||
mutate(z = row_number(), # redundant id # | ||
cat = as.integer(cat)) %>% | ||
## rename for very small names | ||
rename(a = cat, # a := category | ||
b = instnm, # b := name | ||
c = fips, # c := fips | ||
d = enroltot, # d := enrollment (hs) | ||
e = frlpct, # e := frpl pct (hs) | ||
f = csr, # f := stu/cou ratio (hs) | ||
g = csr_flag, # g := missing csr | ||
h = zip, # h := zip code | ||
i = advise_org, # i := organization name | ||
j = advise_div, # h := division name | ||
k = advise_tri, # i := trio subprogram | ||
l = advise_web) # l := website | ||
|
||
## split by schools/community and college | ||
df_coll <- df %>% filter(a %in% c(5:8)) | ||
df_icon <- df %>% filter(a %in% c(0:4,9)) | ||
|
||
## set up as SP data frame | ||
lonlat_coll <- df_coll %>% select(lon, lat) %>% as.matrix() | ||
dfsp_coll <- SpatialPointsDataFrame(lonlat_coll, df_coll %>% select(z), | ||
proj4string = CRS('+init=epsg:3857')) | ||
lonlat_icon <- df_icon %>% select(lon, lat) %>% as.matrix() | ||
dfsp_icon <- SpatialPointsDataFrame(lonlat_icon, df_icon %>% select(z), | ||
proj4string = CRS('+init=epsg:3857')) | ||
|
||
## write as geojson | ||
geojson_write(input = dfsp_coll, file = file.path(ddir, 'college.geojson')) | ||
geojson_write(input = dfsp_icon, file = file.path(ddir, 'icon.geojson')) | ||
|
||
## write all data as minified JS | ||
writeJSArray(df, 's', letters[1:12], file.path(jdir, 'all_icon_array.js')) | ||
|
||
## ============================================================================= | ||
## END FILE | ||
################################################################################ |
Oops, something went wrong.