Skip to content

Security concerns for distributed applications implemented in Spring

License

Notifications You must be signed in to change notification settings

molindo/spring-cloud-security

 
 

Repository files navigation

Gitter

Spring Cloud Security offers a set of primitives for building secure applications and services with minimum fuss. A declarative model which can be heavily configured externally (or centrally) lends itself to the implementation of large systems of co-operating, remote components, usually with a central indentity management service. It is also extremely easy to use in a service platform like Cloud Foundry. Building on Spring Boot and Spring Security OAuth2 we can quickly create systems that implement common patterns like single sign on, token relay and token exchange.

Upgrading to 1.1.0

Most of the OAuth2 features moved from this project to Spring Boot 1.3, so from version 1.1 things are a little different here. Here is a guide to the available features as they were in 1.0, but with new names and slightly new APIs.

As in 1.0, an app will activate @EnableOAuth2Sso if you bind provide some following properties in the Environment.

You can still customize the access rules in an SSO application, but instead of a specific callback (the old OAuth2SsoConfigurer) all you do now is add @EnableOAuth2Sso to a WebSecurityConfigurerAdapter. For example if you want the resources under "/ui/**" to be protected with OAuth2:

@Configuration
@EnableOAuth2Sso
@EnableAutoConfiguration
protected static class TestConfiguration extends WebSecurityConfigurerAdapter {
	@Override
	public void match(RequestMatchers matchers) {
		matchers.antMatchers("/ui/**")
               .authorizeRequests().anyRequest().authenticated();
	}
}

In this case the rest of the application will default to the normal Spring Boot access control for other paths (Basic authentication, or whatever custom filters you put in place).

There is no @EnableOAuth2Resource annotation in Spring Cloud 1.1. You just use the regular @EnableResourceServer from Spring OAuth.

Building

Basic Compile and Test

To build the source you will need to install JDK 1.7.

Spring Cloud uses Maven for most build-related activities, and you should be able to get off the ground quite quickly by cloning the project you are interested in and typing

$ ./mvnw install
Note
You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in the examples below. If you do that you also might need to add -P spring if your local Maven settings do not contain repository declarations for spring pre-release artifacts.
Note
Be aware that you might need to increase the amount of memory available to Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed, please raise a ticket to get the settings added to source control.

For hints on how to build the project look in .travis.yml if there is one. There should be a "script" and maybe "install" command. Also look at the "services" section to see if any services need to be running locally (e.g. mongo or rabbit). Ignore the git-related bits that you might find in "before_install" since they’re related to setting git credentials and you already have those.

The projects that require middleware generally include a docker-compose.yml, so consider using Docker Compose to run the middeware servers in Docker containers. See the README in the scripts demo repository for specific instructions about the common cases of mongo, rabbit and redis.

Note
If all else fails, build with the command from .travis.yml (usually ./mvnw install).

Documentation

The spring-cloud-build module has a "docs" profile, and if you switch that on it will try to build asciidoc sources from src/main/asciidoc. As part of that process it will look for a README.adoc and process it by loading all the includes, but not parsing or rendering it, just copying it to ${main.basedir} (defaults to ${basedir}, i.e. the root of the project). If there are any changes in the README it will then show up after a Maven build as a modified file in the correct place. Just commit it and push the change.

Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse marketplace".

Note
Older versions of m2e do not support Maven 3.3, so once the projects are imported into Eclipse you will also need to tell m2eclipse to use the right profile for the projects. If you see many different errors related to the POMs in the projects, check that you have an up to date installation. If you can’t upgrade m2e, add the "spring" profile to your settings.xml. Alternatively you can copy the repository settings from the "spring" profile of the parent pom into your settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following command:

$ ./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file menu.

Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard Github development process, using Github tracker for issues and merging pull requests into master. If you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the Contributor License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but it does mean that we can accept your contributions, and you will get an author credit if we do. Active contributors might be asked to join the core team, and given the ability to merge pull requests.

Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are expected to uphold this code. Please report unacceptable behavior to spring-code-of-conduct@pivotal.io.

Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the original pull request but before a merge.

  • Use the Spring Framework code format conventions. If you use Eclipse you can import formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

  • Make sure all new .java files to have a simple Javadoc class comment with at least an @author tag identifying you, and preferably at least a paragraph on what the class is for.

  • Add the ASF license header comment to all new .java files (copy from existing files in the project)

  • Add yourself as an @author to the .java files that you modify substantially (more than cosmetic changes).

  • Add some Javadocs and, if you change the namespace, some XSD doc elements.

  • A few unit tests would help a lot as well — someone has to do it.

  • If no-one else is using your branch, please rebase it against the current master (or other target branch in the main project).

  • When writing a commit message please follow these conventions, if you are fixing an existing issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

About

Security concerns for distributed applications implemented in Spring

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 77.0%
  • Shell 13.4%
  • Batchfile 7.3%
  • Ruby 2.3%