pip install -r requirements.txt
Since our method requires the same dependencies as SlowFast, we refer to the official implementation fo SlowFast for installation details.
Input: 8 frames of RGB and optical flow at 0.5 second intervals, starting 2 seconds before the PRE_45 frame.
Output: 5 frames with hand positions on {p3,p2,p1,p,c}; left/right hand position format: x_l, y_l, x_r, y_r
Note on Ground Truth: In the dataloader, we choose pad zeros when hand ground truth is not available.
You need to prepare optical flows by yourself by using FlowFormer
The data should be organized as following:
Path_To_Data_Dir
|
└── annotations
│ │ fho_hands_train.json
│ │ fho_hands_val.json
│ │ fho_hands_test.json
│ │ fho_hands_trainval.json (contains all samples from training and validation set)
|
└── clips
│ │ clip_uid1.mp4
| | clip_uid2.mp4
| | ...
|
└── image_frame
│ └── clip_uid1
│ │ | image_000001.png
| | | image_000002.png
| | | ...
│ └── clip_uid2
│ │ | image_000001.png
| | | image_000002.png
| | | ...
│ └── ...
|
└── optical_flow
│ └── clip_uid1/npy
│ │ | frame_id1.npy
| | | frame_id2.npy
| | | ...
│ └── clip_uid2/npy
│ │ | frame_id1.npy
| | | frame_id2.npy
| | | ...
│ └── ...
python tools/run_net.py --cfg /path/to/configs/Ego4D/I3D_8x8_R50.yaml
python tools/run_net.py --cfg /path/to/configs/Ego4D/I3D_8x8_R50.yaml
python tools/evaluation.py --cfg /path/to//configs/Ego4D/I3D_8x8_R50.yaml