Skip to content

masashi-hatano/ego4d-fhp-challenge-2022

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ego4D Future Hand Prediction Challenge: Two-stream I3D

Installation:

pip install -r requirements.txt

Since our method requires the same dependencies as SlowFast, we refer to the official implementation fo SlowFast for installation details.

Data Preparation:

Input: 8 frames of RGB and optical flow at 0.5 second intervals, starting 2 seconds before the PRE_45 frame.

Output: 5 frames with hand positions on {p3,p2,p1,p,c}; left/right hand position format: x_l, y_l, x_r, y_r

Note on Ground Truth: In the dataloader, we choose pad zeros when hand ground truth is not available.

Pre-process

You need to prepare optical flows by yourself by using FlowFormer

Data-structure

The data should be organized as following:

Path_To_Data_Dir
|
└── annotations
│   │   fho_hands_train.json
│   │   fho_hands_val.json
│   │   fho_hands_test.json
│   │   fho_hands_trainval.json (contains all samples from training and validation set)
|
└── clips
│   │   clip_uid1.mp4
|   |   clip_uid2.mp4
|   |   ...
|
└── image_frame
│   └── clip_uid1
│   │   |   image_000001.png
|   |   |   image_000002.png
|   |   |   ...
│   └── clip_uid2
│   │   |   image_000001.png
|   |   |   image_000002.png
|   |   |   ...
│   └── ...
|
└── optical_flow
│   └── clip_uid1/npy
│   │   |   frame_id1.npy
|   |   |   frame_id2.npy
|   |   |   ...
│   └── clip_uid2/npy
│   │   |   frame_id1.npy
|   |   |   frame_id2.npy
|   |   |   ...
│   └── ...

Training:

 python tools/run_net.py --cfg /path/to/configs/Ego4D/I3D_8x8_R50.yaml 

Testing:

 python tools/run_net.py --cfg /path/to/configs/Ego4D/I3D_8x8_R50.yaml 

Evaluation and Visualization:

 python tools/evaluation.py --cfg /path/to//configs/Ego4D/I3D_8x8_R50.yaml

validation report

Ego4d_fhp_challenge_validation_report.pdf

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages