The paper is under review, and the complete code will be released later
Discovery of EP4 antagonists through image-guided deep learning workflow
conda env create -f environment.yaml
Download datasets from "Data availability".
Slice the EP4 datasets for train
python slice_data2fragmentes.py --input_path your_ligands_file.csv --output_path your_ligands_file_fragments.csv
Construct sliced datasets to muti-smi files
python fragments2mutiSmi.py --input_path your_ligands_file_fragments.csv --output_path datasets/
Traning empty model from one sliced smi files
python create_emptyModel.py ---input_path datasets/one.smi --output_path datasets/model.empty
Begin training
python train_model.py --input_path datasets/model.empty --output_path datasets/model.trained -s datasets/train_fragments/
Slice the EP4 datasets for inference
python slice_data2fragmentes.py --input_path your_inference_file.csv --output_path your_inference_file_fragments.csv
Begin inference
python sample_scaffolds.py -m data_EP4/EP4_decorator/models/model.trained.90 -i data_EP4/EP4_decorator/CN109836434B_slice.smi -o data_EP4/generated_and_screen/CN109836434B_generated.csv -r 64 -n 64 -d multi --of csv
cd Screen
Use the data for screen in folder(DataForScreen), and download pre-trained model and push it into the folder ckpts/ link: https://drive.google.com/file/d/1wQfby8JIhgo3DxPvFeHXPc14wS-b4KB5/view
Finetune:
python finetune.py --gpu ${gpu_no} \
--save_finetune_ckpt ${save_finetune_ckpt} \
--log_dir ${log_dir} \
--dataroot ${dataroot} \
--dataset ${dataset} \
--task_type ${task_type} \
--resume ${resume} \
--image_aug \
--lr ${lr} \
--batch ${batch} \
--epochs ${epoch}
More info about Imagemol, you can reference: https://github.com/HongxinXiang/ImageMol