batch_size | time |
---|---|
2048 | 15.42 s/epoch |
1024 | 16.26 s/epoch |
512 | 18.10 s/epoch |
256 | 23.34 s/epoch |
128 | 33.82 s/epoch |
64 | 55.66 s/epoch |
32 | 100.33 s/epoch |
We should use a batch size of 512 because it's a good trade-off between GPU RAM and time.
screen -S "mu-tild-l2" -dm ./train.py --loss=mu-tild-l2 --epochs=1000 --batch_size=512;
screen -S "x-prev-sig" -dm ./train.py --loss=x-prev-l2 --epochs=100 --batch_size=512 --scheduler=linear-gamma-bar;
screen -S "x-prev-linear-noise" -dm ./train.py --loss=x-prev-l2 --epochs=100 --batch_size=512 --scheduler=linear-noise;
screen -S "x-prev-linear-x" -dm ./train.py --loss=x-prev-l2 --epochs=100 --batch_size=512 --scheduler=linear-x;
screen -S "x-prev-cosine" -dm ./train.py --loss=x-prev-l2 --epochs=100 --batch_size=512 --scheduler=cosine;
screen -S "x-prev-01" -dm ./train.py --loss=x-prev-l2 --epochs=100 --batch_size=512 --normalize_range=0,1;
screen -S "x-prev-0255" -dm ./train.py --loss=x-prev-l2 --epochs=100 --batch_size=512 --normalize_range=0,255;
screen -S "optuna" -dm ./train.py --epochs=50 --optuna;
screen -S "optuna" -dm ./train.py --optuna --epochs=50;
./generate.py --model_id=3767016b1bd404c84d05b4fe083d2d6c94171747 --grid;
./generate.py --model_id=38139a585fce461f46bf8d852da9f61688133422 --grid;
model_id | FID | Precision | Recall |
---|---|---|---|
09593b8aa5cc97196cbe3d9f33ca8da9a60d2423 | 24.447352257962507 | 0.3779296875 | 0.19140625 |
0990623cddd911a710bbc398e040718fe6dfb584 | 43.25397445062495 | 0.2431640625 | 0.107421875 |
0495fb49d6b953f32a46fd11bae4bc91e7cd441a | 32.56234976242416 | 0.3798828125 | 0.1982421875 |
e058b1c7c0722251544cbd6cea5ef2506e5395fa | 23.2540474286169 | 0.3798828125 | 0.20703125 |
09593b8aa5cc97196cbe3d9f33ca8da9a60d2423 -> FID: 18.912463302436265 (1024) -> FID: 14.041892065052991 (60000) -> FID: 0.030252694025587945 (60000+dims=64)
0990623cddd911a710bbc398e040718fe6dfb584 -> FID: 23.392960888701424 (1024) -> FID: 21.14389089247078 (2048) -> FID: 19.78453120816181 (60000) -> FID: 0.008670651386033679 (60000+dims=64) VGG
- differente archi (dense, conv, u-net)
- time steps
- noising process
- nb_channels
- optionnal label embedding