Skip to content

Commit

Permalink
tm27 finish
Browse files Browse the repository at this point in the history
  • Loading branch information
lengyijun committed Oct 17, 2024
1 parent 385794c commit bce1ecf
Show file tree
Hide file tree
Showing 9 changed files with 1,307 additions and 2 deletions.
12 changes: 10 additions & 2 deletions GoldbachTm.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,18 @@
import GoldbachTm.Basic
import GoldbachTm.Format
import GoldbachTm.ListBlank

import GoldbachTm.Tm27.TuringMachine27
import GoldbachTm.Tm27.Search0
import GoldbachTm.Tm27.Transition
import GoldbachTm.Tm27.Miscellaneous
import GoldbachTm.Tm27.Prime
import GoldbachTm.Tm27.PBP
import GoldbachTm.Tm27.Content

import GoldbachTm.Tm31.TuringMachine31
import GoldbachTm.Tm31.Search0
import GoldbachTm.Tm31.Content
import GoldbachTm.Tm31.Transition
import GoldbachTm.Tm31.Prime
import GoldbachTm.Tm31.PBP
import GoldbachTm.Tm31.Transition
import GoldbachTm.Tm31.Content
126 changes: 126 additions & 0 deletions GoldbachTm/Tm27/Content.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
import GoldbachTm.Tm27.TuringMachine27
import GoldbachTm.Tm27.Search0
import GoldbachTm.Tm27.PBP
import Mathlib.Data.Nat.Prime.Defs

namespace Tm27

theorem lemma_26 (n : ℕ) (i : ℕ)
(even_n : Even (n+2))
(g :
nth_cfg i = some ⟨⟨26, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (n+4) Γ.one), Turing.ListBlank.mk []⟩⟩ )
( hpp : goldbach (n+4)) :
∃ j>i, nth_cfg j = some ⟨⟨26, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (n+4+2) Γ.one), Turing.ListBlank.mk []⟩⟩
:= by
forward g g i
repeat rw [← List.replicate_succ] at g
apply (leap_18 _ _ 0) at g
any_goals omega
any_goals assumption
refine (?_ ∘ g) ?_
. intros g
obtain ⟨k, _, h⟩ := g
use k
constructor
. omega
. simp [h]
. obtain ⟨x, y, _, hx, hy⟩ := hpp
by_cases x ≤ y
. use! x, y
repeat any_goals apply And.intro
any_goals assumption
apply Nat.Prime.two_le at hx
omega
. use! y, x
repeat any_goals apply And.intro
any_goals assumption
any_goals omega
apply Nat.Prime.two_le at hy
omega

lemma never_halt_step (n : ℕ) :
(∀ i < n, goldbach (2*i+4)) ->
∃ j, nth_cfg j = some ⟨⟨26, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (2*n+4) Γ.one), Turing.ListBlank.mk []⟩⟩
:= by
induction n with
| zero =>
intros _
use 45
simp [cfg45]
tauto
| succ n =>
rename_i induction_step
intros h
refine (?_ ∘ induction_step) ?_
. intros g
obtain ⟨j, g⟩ := g
specialize h n (by omega)
apply lemma_26 at g
. specialize g h
obtain ⟨k, g⟩ := g
use k
simp [g]
ring_nf
. use (n+1)
ring_nf
. intros i hi
apply h i (by omega)

theorem never_halt (never_none : ∀ i, nth_cfg i ≠ none) (n : ℕ):
goldbach (2*n + 4)
:= by
induction' n using Nat.strongRecOn with n IH
apply never_halt_step at IH
obtain ⟨j, g⟩ := IH
by_contra! h
forward g g j
repeat rw [← List.replicate_succ] at g
apply (leap_18_halt _ _ 0) at g
any_goals omega
refine (?_ ∘ g) ?_
. intros h
obtain ⟨k, h⟩ := h
apply never_none _ h
. intros x y _
apply h ⟨x, y, ?_⟩
ring_nf at *
tauto


theorem halt_lemma_rev' (h : ∀ n, goldbach (2*n+4)) :
∀ i, nth_cfg i ≠ none := by
apply propagating_induction (fun i => nth_cfg i ≠ none) (fun i n => nth_cfg i = some ⟨⟨26, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (2*n+4) Γ.one), Turing.ListBlank.mk []⟩⟩) 45
. simp [cfg45]; tauto
. intros i n g
apply (lemma_26 (2*n)) at g
. specialize g (h _)
obtain ⟨j, g⟩ := g
use j
simp! [g]
. use (n+1)
ring_nf
. intros i n g j hij _
have h₂ : ∀ k, nth_cfg (j+k) = none := by
intro k
induction k with
| zero => tauto
| succ k => rename_i h₁
forward h₁ h₁ (j+k)
rw [← h₁]
ring_nf
specialize h₂ (i-j)
have h₃ : j + (i-j) = i := by omega
rw [h₃] at h₂
rw [h₂] at g
tauto

theorem halt_lemma_rev :
(∃ i, nth_cfg i = none) → (∃ n, ¬ goldbach (2*n+4))
:= by
intros h
by_contra! g
apply halt_lemma_rev' at g
tauto


end Tm27
116 changes: 116 additions & 0 deletions GoldbachTm/Tm27/Miscellaneous.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
-- some lemmas tm31 doesn't contain

import GoldbachTm.Tm27.TuringMachine27
import GoldbachTm.Tm27.Transition

namespace Tm27

theorem lemma7 (k : ℕ): ∀ (i : ℕ) (l r : List Γ),
nth_cfg i = some ⟨⟨7, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ →
nth_cfg (i + k + 1) = some ⟨⟨7, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.zero ++ r)⟩⟩ := by
induction k with (intros i l r h; simp_all)
| zero => forward h h i
rw [← h]
ring_nf
| succ k => forward h h i
rename_i induction_step
apply induction_step at h
ring_nf at *
simp! [h]
rw [List.append_cons]
rw [← List.replicate_succ']
ring_nf

theorem lemma8 (k : ℕ): ∀ (i : ℕ) (l r : List Γ),
nth_cfg i = some ⟨⟨8, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ →
nth_cfg (i + k + 2) = some ⟨⟨9, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (Γ.zero :: l), Turing.ListBlank.mk (List.replicate k Γ.zero ++ r)⟩⟩ := by
induction k with (intros i l r h; simp_all)
| zero => forward h h i
forward h h (1+i)
rw [← h]
ring_nf
| succ k => forward h h i
rename_i induction_step
apply induction_step at h
ring_nf at *
simp! [h]
rw [List.append_cons]
rw [← List.replicate_succ']
ring_nf

theorem lemma5 (k : ℕ): ∀ (i : ℕ) (l r : List Γ),
nth_cfg i = some ⟨⟨5, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ →
nth_cfg (i + k + 2) = some ⟨⟨4, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (Γ.zero :: l), Turing.ListBlank.mk (List.replicate k Γ.zero ++ r)⟩⟩ := by
induction k with (intros i l r h; simp_all)
| zero => forward h h i
forward h h (1+i)
rw [← h]
ring_nf
| succ k => forward h h i
rename_i induction_step
apply induction_step at h
ring_nf at *
simp! [h]
rw [List.append_cons]
rw [← List.replicate_succ']
ring_nf

theorem lemma10 (k : ℕ): ∀ (i : ℕ) (l r : List Γ),
nth_cfg i = some ⟨⟨10, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate k Γ.zero ++ List.cons Γ.one r) ⟩⟩ →
nth_cfg (i + k + 1) = some ⟨⟨10, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ l), Turing.ListBlank.mk r⟩⟩ := by
induction k with (intros i l r h; simp_all)
| zero => forward h h i
rw [← h]
ring_nf
| succ k => rename_i induction_step
specialize induction_step (i+1) (List.cons Γ.one l) r
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega
rw [g, induction_step]
. simp [List.replicate_succ' (k+1)]
. simp! [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move]

theorem lemma_6_to_7 (i : ℕ) (l1: ℕ) (l r : List Γ)
(h :
nth_cfg i = some ⟨⟨6, by omega⟩, ⟨Γ.one,
Turing.ListBlank.mk (List.replicate l1 Γ.one ++ List.cons Γ.zero l),
Turing.ListBlank.mk r,
⟩⟩) :
∃ j>i, nth_cfg j = some ⟨⟨7, by omega⟩, ⟨Γ.zero,
Turing.ListBlank.mk l,
Turing.ListBlank.mk (List.replicate (l1+1) Γ.zero ++ r),
⟩⟩
:= by
forward h h i
cases l1 with
| zero => use (1+i)
simp [h]
| succ l1 => simp! at h
apply lemma7 at h
use (1+i+l1 + 1)
simp [h]
constructor
. omega
. rw [List.append_cons, ← List.replicate_succ']

theorem lemma_9_to_10 (i : ℕ) (r1: ℕ) (l r : List Γ)
(h :
nth_cfg i = some ⟨⟨9, by omega⟩, ⟨Γ.zero,
Turing.ListBlank.mk l,
Turing.ListBlank.mk (List.replicate r1 Γ.zero ++ List.cons Γ.one r),
⟩⟩) :
∃ j>i, nth_cfg j = some ⟨⟨10, by omega⟩, ⟨Γ.one,
Turing.ListBlank.mk (List.replicate r1 Γ.one ++ Γ.zero :: l),
Turing.ListBlank.mk r,
⟩⟩
:= by
forward h h i
cases r1 with simp_all
| zero => use (1+i)
simp [h]
| succ l1 => simp! at h
apply lemma10 at h
use (1+i+l1 + 1)
simp [h]
omega

end Tm27
Loading

0 comments on commit bce1ecf

Please sign in to comment.