-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
182 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
-- theorem of recursive states | ||
import GoldbachTm.Tm31.TuringMachine31 | ||
|
||
|
||
-- left | ||
theorem rec5 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨5, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨5, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ r)⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) l (List.cons Γ.one r) | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec9 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨9, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨9, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ r)⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) l (List.cons Γ.one r) | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec10 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨10, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨10, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ r)⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) l (List.cons Γ.one r) | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec15 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨15, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨15, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ r)⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) l (List.cons Γ.one r) | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec16 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨16, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨16, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ r)⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) l (List.cons Γ.one r) | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec20 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨20, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨20, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ r)⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) l (List.cons Γ.one r) | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec22 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨22, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨22, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ r)⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) l (List.cons Γ.one r) | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
|
||
-- right | ||
theorem rec12 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨12, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero r) ⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨12, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ l), Turing.ListBlank.mk r⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) (List.cons Γ.one l) r | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec13 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨13, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero r) ⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨13, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ l), Turing.ListBlank.mk r⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) (List.cons Γ.one l) r | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec21 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨21, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero r) ⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨21, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ l), Turing.ListBlank.mk r⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) (List.cons Γ.one l) r | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec24 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨24, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero r) ⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨24, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ l), Turing.ListBlank.mk r⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) (List.cons Γ.one l) r | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec25 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨25, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero r) ⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨25, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ l), Turing.ListBlank.mk r⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) (List.cons Γ.one l) r | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto | ||
|
||
theorem rec30 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨30, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero r) ⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨30, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ l), Turing.ListBlank.mk r⟩⟩ := by | ||
induction k with intros i l r h | ||
| zero => simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) (List.cons Γ.one l) r | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
tauto |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters